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ABSTRACT 

Aspects of development of the facial and hypoglossal motor systems were 

investigated in the neonatal Brazilian opossum, Monodelphis domestica. Monodelphis is a 

small pouchless marsupial whose young are bom after 14 days of gestation in an extremely 

immature state while neurogenesis is still ongoing. 

1) The developmental time course for synaptogenesis in the facial motor nucleus 

(FMN) and the hypoglossal motor nucleus (HMN) was examined using 

immunohistochemistry against: synaptic vesicle-associated proteins, synaptophysin and 

synaptotagmin; a synaptic membrane protein, SNAP-25; a growth cone protein, GAP-43; 

and microtubule-associated proteins, Tau-1 and MAP-2. We found that appearance of 

synapse-associated proteins is delayed in the FMN as compared to the HMN during the 

first two weeks of postnatal life. 

2) To examine the postnatal development of the FMN and HMN we utilized 

retrograde tract tracing with cholera toxin subunit B (CtB). On the day of birth (1 PN), 

CtB labeled facial motoneurons were localized near the developing abducens nucleus. 

From 3 to 5 PN facial motoneurons were observed migrating to the FMN, and by 7 to 10 

PN facial motoneurons had completed their migration. In contrast, CtB-labeled 

hypoglossal motoneurons were localized within the HMN from birth onward. Migrating 

facial motoneurons displayed a bipolar shape characteristic of migrating neurons, their rate 

of migration was faster than the rate of brainstem expansion, and they were localized in 

close proximity of vimentin immunostained radial glial fibers previously shown to guide 

migrating neurons. 

3) Utilizing immunohistochemistry against choline acetyltransferase, 

neurofilament, and synaptotagmin we demonstrated that both facial and hypoglossal 

motoneuron projections extend to their respective target muscles and appear to innervate 

them from the day of birth. These results suggest that facial and hypoglossal motoneurons 
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innervate their target muscles at birth, during the period of facial motoneuron migration. 

Further, the FMN does not have synaptic or "classical" afferent innervation during this 

period. We suggest that the activity of facial motoneurons is regulated in a novel or distinct 

manner compared to hypoglossal motoneurons during this period of brain development. 
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CHAPTER ONE. GENERAL INTRODUCTION 

In the class Mammalia, suclcling is possibly the only behavior that is universal and also 

a characteristic of the class. Researchers have been interested in investigating this behavior 

because of its importance for the development and survival of manmialian young. Yet despite 

its importance in mammals, little is known about what factors at the level of the central nervous 

system regulate newborn suckling, or how these factors contribute to this behavior during 

growth and development in neonates. 

Within the central nervous system, suckling behavior is thought to be regulated by 

motor cortex control of the oromotor system. The oromotor system is comprised of three 

motor nuclei of cranial nerves that control oral functions. The three motor systems are the 

trigeminal (5), facial (7), and hypoglossal (12) cranial nerves. The motoneuron component of 

the trigeminal cranial nerve innervates the muscles utilized in mastication (Carpenter, 1991; De 

Lahunta, 1983). Developing Brazilian opossum pups lack a developed, functional dentary-

squamosal joint until after 14 PN (Filan, 1991; Miiller, 1968). Since suckling behavior begins 

at birth, the trigeminal component probably is not utilized for this behavior during that period 

before joint formation. Projections from motoneurons within the hypoglossal motor nucleus 

innervate the intrinsic musculature of the tongue (Carpenter, 1991; De Lahunta, 1983). 

Innervation of the tongue musculature by the hypoglossal motoneurons plays a cmcial role in 

suckling mechanisms and has been investigated in some detail (German and Crompton, 1996; 

Miiller, 1968). Motoneuron projections from the facial motor nucleus innervate the muscles of 

facial expression, specifically the muscles of the ear, eyelids, nose, cheeks, lips, and the caudal 

digastricus (Carpenter, 1991; De Lahunta, 1983). In addition to the tongue muscles, we 

believe that suckling behavior might need to utilize musculature of the face which would be 

innervated by the facial motor system. 

Development of cranial nerves, like the facial nerve, has been documented in Eutherian 

mammals (Ashwell and Watson, 1983; Auclair et al., 1996; Gasser and Hendrickx, 1967; 
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Pearson, 1946; Pearson, 1947; Sataloff, 1990). However, because most of this development 

is prenatal, these studies of cranial nerve development in placental mammals required the use of 

either in utero procedures (Ashwell and Watson, 1983; Auclair et al., 1996) or cesarean section 

and fixation at critical time points during development (Gasser and Hendrickx, 1967; Pearson, 

1946; Pearson, 1947; Sataloff, 1990) for their descriptions of facial nerve ontogeny. 

Eutherian, or placental mammals, complete most of their development within the uterus, joined 

to the mother via the placenta (Campbell, 1987). In contrast, marsupials are bom very early 

and complete their development, usually in the pouch, fixed to the mother's teat while nursing. 

A notable difference exists between these two orders of mammals concerning the 

developmental stage of the neonate at the time of birth, in that the marsupial is bora extremely 

early and continues to develop "ex utero." Marsupials are bora in an extremely immamre state 

that might be considered almost an embryonic condition when compared to the developmental 

stage of Eutherian young. Although, at birth developing marsupial neonates already possess 

functional systems for suckling and respiration. Thus, marsupials are a useftil tool that present 

an attractive alternative to study neuroembryological events. 

In these studies we have examined the development of several components of the 

developing facial and hypoglossal motor systems in the marsupial. These systems are thought 

to be involved in suckling behavior in these developing neonates. In addition, neurological 

development in marsupial neonates continues well after birth, as they have protracted 

neurogenesis continuing well into the postnatal period (Iqbal et al., 1995a; Jacobson, 1984; 

Kuehl-Kovarik et al., 1995b; Swanson et al., 1994). 

To take advantage of the protracted, postnatal development that occurs in marsupials, 

our laboratory utilizes Monodelphis domestica, the Brazilian gray short-tailed opossum. 

Monodelphis is a small pouchless marsupial that breeds well in the laboratory (Fadem et al., 

1982). The absence of a pouch makes the young very accessible to manipulations for in vivo, 

"ex utero" developmental studies, thereby circumventing technically difficult in utero surgical 
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procedures that are required for studies with more conventional laboratory animals such as rats 

and mice. At birth neonatal opossum pups are essentially capable of suckling behavior in 

addition to their homeostatic functions: breathing, circulation, digestion, etc. The Brazilian 

opossum presents an opportunity to examine suckling at a time when the development of motor 

systems might not yet be completed. 

Our laboratory has previously described the ontogeny of several neurochemical systems 

in Monodelphis (Elmquist et al., 1992; Elmquist et al., 1993; Elmquist et al., 1994; Fox et al., 

1991a; Fox et al.. 1991b; Iqbal et al., 1995a; Iqbal et al., 1995b; Iqbal and Jacobson, 1995a; 

Iqbal and Jacobson, 1995b; Kuehl-Kovarik et al., 1995a; Kuehl-Kovarik and Jacobson, 1996; 

Kuehl-Kovarik et al., 1993a; Pearson et al., 1993). In addition, several other laboratories are 

utilizing Monodelphis to study development of central nervous system regions including; 

olfactory bulbs (Brunjes et al., 1992; Philpot et al., 1994), visual system (Guillery and Taylor, 

1993; Rivkees et al., 1988; Sakaguchi et al., 1994; Stone et al., 1994; Taylor and Guillery, 

1994; West-Greenlee et al., 1996), cerebral cortex (Saunders et al., 1989), hypothalamus 

(Rivkees et al., 1988; Schwanzel-Fukuda et al., 1988), brainstem (Wang et al., 1992), 

cerebellum (Dore et al., 1990), and spinal cord (Cassidy and Cabana, 1993; Mollgard et al., 

1994; Nicholls et al., 1990; Stewart et al., 1991; Treheme et al., 1992). 

Literature Review 

Muscles that contribute to oromotor behaviors receive innervation essentially from three 

cranial nerve motor nuclei: trigeminal, facial, and hypoglossal (reviewed in Travers, 1995). 

The motoneurons from the trigeminal motor nucleus (TMN), control the muscles of mastication 

involved in jaw closing and jaw opening. Motoneurons located in the facial motor nucleus 

(FMN) innervate the muscles involved in facial expression and motoneurons located in the 

hypoglossal motor nucleus (HMN) innervate the muscles controlling movement of the tongue. 

This research will concentrate on the maturation of two oromotor nuclei that might participate in 

suckling behavior: the facial and hypoglossal motor nuclei. 
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The facial nerve is the seventh cranial nerve; it has motor, parasympathetic, and sensory 

components (Carpenter, 1991). Taste receptors on the anterior two-thirds of the tongue 

constitute the sensory component and innervation of the pterygopalatine and submandibular 

ganglions by the superior salivatory nucleus constimte the parasympathetic component. The 

motor component consists of motoneurons located in the facial motor nucleus (FMN) which 

innervate the muscles of facial expression and movement (supplying the ear, eyelid, nose, 

cheek, lips, and the caudal digastricus). The FMN is located in the ventral-lateral medulla; it is 

caudal to the trapezoid body, rostral to the inferior olivary nucleus, at the level of attachment of 

the caudal cerebellar peduncle to the cerebellum, and midway between the pyramid and the 

spinal tract of the trigeminal nerve (De Lahunta, 1983). Specific behaviors to which the FMN 

contributes would include suckling, attack, defense, emotion, and exploration. 

The hypoglossal nerve is the twelfth cranial nerve; it has only a motor component 

(Carpenter, 1991). The musculature of the tongue is innervated by motoneurons located within 

the hypoglossal motor nucleus (HMN) that constitute the hypoglossal nerve. The HMN is 

located in the caudal-dorsal medulla, adjacent to the midline at the floor of the fourth ventricle 

(De Lahunta, 1983). The HMN would contribute to behaviors involved in suckling, licking, 

swallowing, and food intake in general. 

The development of a functional motor system includes neurogenesis, neuronal 

migration, nucleus organization, cell death, and the establishment of both afferent and efferent 

synapses. This research is designed to study several of these phenomena during the maturation 

of the facial and hypoglossal motor nuclei in the Brazilian opossum. 

Neurogenesis 

Neurogenesis of the brainstem cranial motor nuclei appears to be a prenatal event in the 

Brazilian opossum (Jacobson laboratory, unpublished observations). The timing of the 

genesis of the facial and hypoglossal motoneurons is not known for the Brazilian opossum but 

has been investigated in detail in the neonatal rat (reviewed in Altman and Bayer, 1995a; 
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Altman and Bayer, 1995b). The rat FMN has a neurogenic gradient with the rostral neurons 

being "older" and the caudal neurons being "younger." Specifically the rostral facial 

motoneurons are generated on embryonic days 12 (El2; 40%) and 13 (60%) while the caudal 

facial motoneurons are generated on E12 (10%), E13 (85%), and E14 (5%). Neurogenesis of 

the HMN occurs on Ell (10%) and E12 (90%). The HMN does not have a rostral to caudal 

gradient as observed in the FMN. Thus, the hypoglossal motoneurons are formed slightly 

earlier than the facial motoneurons. 

Migration 

Migration of facial motoneurons is also well characterized in the embryonic rat (Altman 

and Bayer, 1982; Altman and Bayer, 1995a; Altman and Bayer, 1995b). Following 

neurogenesis, from the midline neuroepithelium, the growth of efferent axons precedes the 

perikaryal migration through the brainstem. Perikaryal migration of facial motoneurons takes 

an initial course directed at a right angle away from their efferent axons. This initial right angle 

of migration helps to form the genu of the facial nerve with the efferents axons "looping" 

around the abducens cranial nucleus. Facial motoneurons migrate away from the dorsal 

midline of the medulla in a ventral-lateral direction toward the location of the "adult" FMN in 

the ventral-lateral region of the medulla. This complex pattern of migration is unique; it differs 

dramatically from and is best contrasted to trigeminal motoneurons migrating to their motor 

nucleus. Following neurogenesis, from the midline neuroepithelium, trigeminal motoneurons 

undergo perikaryal migration in a lateral direction to their motor nucleus first and then the 

growth of efferent axons follows. Hypoglossal motoneurons have a limited migration after 

neurogenesis from the neuroepithelium along the floor fourth ventricle to the adjacent location 

of the HMN. 

Nucleus Organization 

Previously researchers have reported that the FMN consists of several distinct 

subnuclei visible at the light microscopic level in the adult cat (Courville, 1966; Papez, 1927), 
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dog (Papez, 1927; Vraa-Jensen, 1942), guinea pig (Papez, 1927), monkey (Welt and Abbs, 

1990), mouse (Ashwell, 1982), opossum [Brush-tailed (Provis, 1977), and North American 

(Dom, 1982)] and rat (Hinrichsen and Watson, 1984; Komiyama et al., 1984; Kume et al., 

1978; Martin and Lodge, 1977; Papez, 1927; Semba and Egger, 1986; Watson et al., 1982). 

The number and shape of these subnuclei very from species to species; however, the FMN can 

generally be subdivided into 5-6 subnuclei identified as medial, intermediate, lateral, dorsal 

lateral, and suprafacial (accessory facial). However, the FMN of the Brazilian opossum does 

not appear to contain separate subnuclei as observed in the other species. Also, the HMN of 

the Brazilian opossum and other species is not composed of distinct subnuclei as observed in 

the FMN. 

Cell Death 

The occurrence of cell death has been previously examined in the developing FMN of 

the mouse (Ashwell and Watson, 1983). In this study Ashwell and Watson examined cell 

death through utilization of motoneuron counts at different time points. Their study concluded 

that of the number of motoneurons present on embryonic day 17 (El7) in the FMN 68% 

disappear before adulthood with the highest losses occurring between El8 to E20. 

Motoneurons with pyknotic nuclei were observed on E17 and were most numerous on El8 

leading to the conclusion that the loss of motoneurons was mainly a result of cell death. 

Utilizing retrograde tract tracing they reported that facial motoneurons were connected to their 

respective target muscles before the majority of cell death occurs. 

Efferent Innervation 

Previous smdies, utilizing retrograde tract tracing, have described the adult innervation 

of peripheral musculature in multiple species (Ashwell and Watson, 1983; Kume et al., 1978; 

Populin and Yin, 1995; Provis, 1977; Senbaet al., 1987; Watson et al., 1982; Welt and Abbs, 

1990). In addition, these studies indicate that the innervation pattem forms a topographically 

ordered map within the FMN of the adult cat (Courville, 1966; Papez, 1927), dog (Papez, 
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1927; Vraa-Jensen, 1942), guinea pig (Papez, 1927), monkey (Welt and Abbs, 1990), mouse 

(Ashwell, 1982), opossum [Brush-tailed (Provis, 1977), and North American (Dom, 1982)] 

and rat (Hinrichsen and Watson, 1984; Komiyama et al., 1984; Kume et al., 1978; Martin and 

Lodge, 1977; Papez, 1927; Semba and Egger, 1986; Watson et al., 1982). Throughout the 

studies there is general agreement that the caudal (auricular) muscles are innervated by 

motoneurons in the medial aspects of the FMN; dorsal (ocular) muscles are innervated by 

motoneurons in the dorsal aspects of the FMN; ventral muscles are innervated by motoneurons 

in the ventral aspects of the FMN; and the rostral (nasolabial) muscles are innervated by 

motoneurons in the lateral aspects of the FMN. 

In addition, previous reports using retrograde tract tracing of facial motoneurons in the 

mouse suggest that facial motoneurons are connected to their target muscles by embryonic day 

17 (Ashwell and Watson, 1983). In the neonatal rat, studies indicate that the facial 

motoneurons innervate their respective target muscles by birth [1 PN, personal observations; 

(Klein et a!., 1990)] or soon after [5 PN, (Senba et al., 1987; Yokosuka and Hayashi, 1992)]. 

The study by Klein and colleagues (1990) reported that the innervation pattern of facial 

musculature from the FMN was similar when compared to adult rats. However, the expected 

time course of innervation for facial motoneurons in the rat would be embryonic, similar to the 

mouse, and has not been examined. 

Previous studies have examined the innervation of the hypoglossal motoneurons in 6 

day old postnatal rat pups (Senba et al., 1987) and in the adult (Aides, 1995; Barnard, 1940; 

Krammer et al., 1979; Lewis et al., 1971). The somatotopic organization of the HMN has 

been investigated by retrograde degeneration (Barnard, 1940), tract tracing (Aides, 1995; 

Krammer et al., 1979), and cholinesterase histochemistry (Lewis et al., 1971). The studies are 

in general agreement that the dorsal aspects of the HMN innervate tongue retrusor muscles and 

the ventral aspects of the HMN innervate the tongue protrusor muscles. 



www.manaraa.com

8 

Afferent Innervation 

A number of studies describe the afferent projections to the motor nuclei that play a role 

in ingestive behaviors. Afferent projections to the trigeminal, facial, and hypoglossal motor 

nuclei from the reticular formation are involved in oral-facial functions in the adult rat 

(reviewed in Travers, 1995; Travers and Norgren, 1983). The rat FMN receives afferent 

innervation from nuclei within the midbrain, pons, and medulla. In fact, most of the 

projections to oromotor nuclei are from neurons within the reticular formation. Neurons from 

within the reticular formation that project to the TMN are located rostral to neurons projecting 

to the HMN, which are rostral to neurons projecting to the FMN. The FMN also receives 

afferent input from other sources. Projections to the FMN from within the midbrain are from 

central gray, lateral lemniscus, midbrain reticular formation, olivary pretectal nucleus, 

periocular nuclei, red nucleus, and superior colliculus (Bystrzycka and Nail, 1983; Travers, 

1995; Travers and Norgren, 1983). Pontine projections to the FMN are from the Kolliker-

Fuse nucleus, ventrolateral parabrachial nucleus, sensory trigeminal nucleus, and pontine 

reticular formation. Medullary projections to the FMN are from the caudal spinal trigeminal 

complex, medial vestibular nuclei, nucleus of the solitary tract, and medullary reticular 

formation. Borke and coworkers (1983) reported, in the adult rat, that the HMN receives its 

primary projections from the reticular formation, nucleus of the solitary tract, and spinal 

trigeminal nucleus, with additional projections from several other nuclei similar to the FMN. 

The peptidergic and aminergic innervation of the FMN in the neonatal rat shows an 

increase during the first week of postnatal life, with an established innervation pattern 

appearing by the tenth postnatal day (Senba et al., 1985). The FMN receives peptidergic and 

aminergic innervation in the way of acetylcholine from the reticular formation, met-enkephalin 

from the olivary pretectal nucleus and reticular formation, noradrenaline from the Kolliker-Fuse 

and subceruleus nucleus, serotonin from the raphe nuclei, and substance P from the periocular 

nuclei and reticular formation (reviewed in Senba et al., 1985; Travers, 1995). 
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In the adult North American opossum {Didelphis virginiana), mesencephalic 

projections to oral motor nuclei strongly favor the FMN (Panneton and Martin, 1978; Panneton 

and Martin, 1979; Panneton and Martin, 1983). In addition, the opossum FMN receives 

afferent innervation from brainstem areas such as the reticular formation, nucleus of the solitary 

tract, and trigeminal sensory nucleus (reviewed in Dom et al., 1973; Panneton and Martin, 

1983), similar to the rat (Travers, 1995; Travers and Norgren, 1983). 

Transient Receptors 

In the neonatal rat, facial motoneurons have been shown to transiendy express a 

number of compounds and receptors. Tribollet and coworkers (1991) have reported a transient 

expression of vasopressin binding sites between E17 and 19 PN in the FMN of the rat. In 

extracellular recordings from facial motoneurons, the application of arginine vasopressin 

resulted in neuronal excitation (acting through a V i type receptor) indicating formadon of 

functional postsynaptic receptors and second messenger systems. In addition, the HMN 

expresses vasopressin binding sties from 1 to 25 PN in the neonatal rat and lower levels in the 

adult (Tribollet et al., 1991). Yokosuka and Hayashi (1992) have described estrogen-receptor-

like-immunoreactivity being transiently expressed in the FMN of rat pups from postnatal day I 

through 11. Both facial and hypoglossal motoneurons transiently express nerve growth factor 

(NGF) receptors during development (Friedman et al., 1991; Yan and Johnson, 1988). In the 

developing rat, these NGF receptors are expressed from E15 to 10 PN by facial and 

hypoglossal motoneurons. 

Both the facial and hypoglossal motoneurons transiently express adenosine deaminase 

(ADA) in the rat during development (Senba et al., 1987). Facial motoneurons express ADA 

from El8 to 15 PN while hypoglossal motoneurons express ADA from E15 to 25 PN. The 

significance of the transient expression of ADA is not known, but is suggested that the 

metabolic pathway associated with ADA is important in the mamration of these motoneurons. 

Our laboratory has reported a transient expression of cholecystokinin (CCK) binding 
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sites in the FMN of the Brazilian opossum (Kuehl-Kovarik et al., 1993b) and neonatal rat 

(Kuehl-Kovarik and Jacobson, 1996). In the Brazilian opossum, CCK binding sites are 

present in the developing hindbrain from birth and can be localized to the FMN by 10 PN. 

They are abundant through 35 PN, then decrease at 45 PN and disappear by 60 PN, then 

return in the adult. In addition, our laboratory demonstrated that CCK binding sites are 

transiently expressed in the FMN of the laboratory rat from E20 through 10 PN (Kuehl-

Kovarik and Jacobson, 1996). In the Brazilian opossum, binding sites for CCK are expressed 

diffusely in the region of the HMN from birth until 25 PN, when they are discretely localized 

in the HMN. In both the opossum and rat, CCK binding sites are present in the FMN in 

neonatal pups and disappear prior to weaning. The significance of these binding sites in 

relation to the development of the FMN or neonatal behavior is unknown. 

Dissertation Organization 

The body of this dissertation consists of three manuscripts. The First manuscript has 

been published in the Joumal of Comparative Neurology [368: 270-284, (1996)]. The second 

and third manuscripts will be submitted to the joumal Developmental Brain Research. The 

papers are preceded by a general introduction and followed by a summary and general 

discussion. The literature cited in the introduction and discussion is listed after the general 

discussion section. All of the research presented in this dissertation was performed by myself, 

under the guidance of Dr. Carol D. Jacobson and Dr. M. Cathleen Kuehl-Kovarik. 
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CHAPTER TWO. CHARACTERIZATION AND ONTOGENY OF SYNAPSE-

ASSOCIATED PROTEINS IN THE DEVELOPING FACIAL AND 

HYPOGLOSSAL MOTOR NUCLEI OF THE BRAZILIAN OPOSSUM BRAIN 

A paper published in the Journal of Comparative Neurology 

Jack J. Swanson, M. Cathleen Kuehl-Kovarik, Michael C. Wilson, 

Joel K. Elmquist, and Carol D. Jacobson 

Abstract 

The characterization and ontogeny of synapse-associated proteins in the developing 

facial and hypoglossal motor nuclei were examined in the Brazilian opossum (Monodelphis 

domestica). Immunohistochemical markers utilized in this study were: synaptic vesicle-

associated proteins, synaptophysin and synaptotagmin; a synaptic membrane protein, plasma 

membrane-associated protein of 25 kDa (SNAP-25); a growth cone protein, growth-associated 

phosphoprotein-43 (GAP-43); and microtubule-associated proteins, axonal marker Tau and 

dendritic marker microtubule-associated protein-2 (MAP-2). In this study we have found that 

during the first ten postnatal days (l-IO PN), the facial motor nucleus lacked immunoreactivity 

for synaptophysin, synaptotagmin, GAP-43, Tau, and SNAP-25. After 10 PN, 

immunoreactivity increased in the facial motor nucleus for synaptophysin, synaptotagmin, 

GAP-43, and Tau, whereas immunoreactivity for SNAP-25 was not evident until between 15 

and 25 PN. Conversely, immunoreactivity for MAP-2, was present in the facial motor nucleus 

from the day of birth. In contrast, the hypoglossal motor nucleus displayed immunoreactivity 

from 1 PN for synaptophysin, synaptotagmin, SNAP-25, GAP-43, Tau, and MAP-2. These 
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results suggest that the facial motor nucleus of the opossum may not receive afferent 

innervation as defined by classical synaptic markers until 15 PN, and further, that characteristic 

mature synapses are not present until between 15 and 25 PN. These results indicate that there 

may be a delay in synaptogenesis in the facial motor nucleus as compared to synaptogenetic 

events in the hypoglossal motor nucleus. Since the facial motor nucleus is active prior to 

completion of synaptogenesis we suggest that the facial motoneurons are regulated in a novel 

or distinct manner at this time period. 

Introduction 

Neuron proliferation, migration, process extension, and synaptogenesis make up a 

complex procession of events that is precisely timed and regulated during development of the 

central nervous system (CNS). The characterization of the temporal expression of markers of 

synaptogenesis during neurogenesis and development will further our understanding of the 

complexity of the developing mammalian CNS. This study utilizes markers of process 

extension and synaptogenesis in order to compare the time course of the afferent innervation to 

the facial and hypoglossal motor nuclei during development. 

In general, the identification of the time course of developmental events for cranial 

motoneurons often requires the use of in utero procedures. The use of marsupials offers an 

attractive alternative for in vivo studies of the developing CNS. Our laboratory has previously 

described the ontogeny of several neurochemical systems in the Brazilian short-tailed opossum, 

Monodelphis domestica (Fox. et a\., 1991a,b; Elmquist et al., 1992, 1993, 1994; Kuehl-

Kovarik et al., 1993a). Monodelphis is a small pouchless marsupial that breeds well in the 

laboratory. The young are bom in an extremely immature state with a protracted postnatal 

period of neurogenesis (Jacobson, 1984; Iqbal et al., 1995; Swanson et al., 1994). The 

absence of a pouch makes the young very accessible to manipulations for in vivo, "ex utero" 

developmental studies. 

Our recent stiadies have focused upon the distribution of neuropeptides and their 
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receptors during development. Facial motoneurons transiently express cholecystokinin (CCK) 

binding sites between day I of postnatal life (1 PN) and 35 PN, disappearing by 60 PN in the 

Brazilian opossum (Kuehl-Kovarik et al., 1993a) We have also shown that CCK binding sites 

are transiently expressed in the facial motor nucleus of the laboratory rat (Kuehl-Kovarik et al., 

1993b). Along with the facial motor nucleus, the hypoglossal motor nucleus is involved in 

food intake and swallowing. However, in the Brazilian opossum, CCK binding sites become 

diffusely evident in the area of the hypoglossal motor nucleus at 10 PN and are subsequently 

consistently expressed from 25 PN (Kuehl-Kovarik et al., 1993a). These results indicate 

possible differential regulation of the two motor nuclei during the early postnatal period. 

One method of investigating potential differential regulation of the oromotor nuclei 

involves determining the time of synaptogenesis for each of the motor nuclei. Previously, 

odiers have mapped the development of brain regions using several different 

immunohistochemical markers of synaptogenesis. For example, synaptic formation has been 

reported to correlate with the expression of synaptophysin (p38; Masliah et al., 1991; Laemie et 

al., 1991; Leclerc et al., 1989), synaptotagmin (p65; Lou and Bixby, 1993), synaptosomal-

associated protein of 25 kDa (SNAP-25; Bark, 1993; Catsicas et al., 1991), growth-associated 

phosphoprotein-43 (GAP-43; Dani et al., 1991), synapsin I (Moore and Bernstein, 1989), and 

synaptophorin (synaptophysin H; Lou and Bixby, 1993). 

These proteins are found in various components of the neuron. Synaptophysin is a 

major integral protein of synaptic vesicles and its presence is required for the fusion of the 

vesicle preceding neurotransmitter release (Greengard et al., 1993). The developmental profile 

of synapses has been shown to correlate with the distribution of synaptophysin 

immunoreactivity as seen with the light microscope (Voigt et al., 1993). Synaptotagmin is also 

localized in synaptic vesicles (Siidhof and Jahn, 1991; Walch-Solimena et al., 1993) and is 

needed for the secretory process. Synaptotagmin is believed to play a role in either the docking 

of the vesicle at the release site or in the fusion of the vesicle with the plasma membrane 
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(DeBello et al., 1993; Greengard et al., 1993; O'Connor et al., 1994). Utilization of SNAP-25 

immunohistochemistry may provide insight into the formation of mature synapses. The 

expression of SNAP-25 (a protein located on the presynaptic plasma membrane) mRNA and 

protein have been found to be correlated with the time of synaptogenesis (Catsicas et al., 

1991). SNAP-25 is hypothesized to have an important role during vesicle docking and fusion 

as a 25 kDa SNAP receptor (SNARE) protein (Wilson and Bark, 1994). Immunocytochemical 

studies of SNAP-25 have reported a cellular localization with an accompanying shift from 

axons and cell bodies to the presynaptic terminals (Oyler et al., 1991). The shift of SNAP-25 

protein during subcellular development suggests that SNAP-25 may play a role in the 

establishment and stabilization of specific presynaptic terminals in the brain. Immunoreactivity 

for GAP-43 has been used as a marker of axonal growth cones and can be used to distinguish 

axonal from dendritic growth cones (Goslin et al., 1988). Tau is a microtubule-associated 

protein (MAP) that has been localized in the axonal process while MAP-2 is another MAP that 

is found specifically in the soma and dendritic processes of neurons (Ferreira et al., 1987). 

In order to look at the potential role of afferent input to the motor nuclei during 

development, the present study examines the characterization and ontogeny of the synapse-

associated proteins in the facial and hypoglossal motor nuclei of the newborn Brazilian 

opossum brain. We have characterized the distribution in the facial motor nucleus and 

hypoglossal motor nucleus for; synaptophysin, synaptotagmin, SNAP-25, GAP-43, paired 

helical filaments-1 (TAU; PHF-1), and MAP-2 during postnatal development. 

Materials and Methods 

Animals 

Developing Brazilian gray short-tailed opossums were obtained from a colony at Iowa 

State University. Animals used to start and maintain the breeding colony were obtained from 

the Southwest Foundation for Research and Education (San Antonio, TX). Opossums were 

individually housed in plastic cages, maintained at a constant temperature (26°C) with a 14:10 
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light-dark cycle, with food and water available ad libitum (Reproduction Fox Chow: Milk 

Specialties Products, Madison, WI). The animals and procedures used were in accordance 

with the guidelines and approval of the Iowa State University Committee on Animal Care. To 

obtain pups, male and female animals were paired for breeding for 14 days and then separated. 

Females were then checked daily at 1500 hours for the presence of pups (day of birth = day 1 

of postnatal life; 1 PN)- After a gestational period of 14 days (Fadem et al., 1982), pups are 

bom in an extremely immature state, open their eyes around 30 PN, and are weaned at 60 PN 

(Schwanzel-Fukuda et al., 1988). At least three animals from a minimum of three different 

litters were used at each of the following time points (1, 3, 5, 7, 9, 11, 13, 15, and 25 PN) for 

the immunohistochemical study. Adult female opossums used for immunoblotting were 

obtained from the colony described above. 

Adult female rats (Harlan Sprague-Dawley, Indianapolis, IN) used in this study were 

maintained at Iowa State University. Rats were housed in plastic cages, maintained at a 

constant temperature (23 °C) with a 14:10 light-dark cycle, with food and water available ad 

libitum (Teklad Rodent Diet: Harlan Sprague-Dawley). 

Tissue and Protein Preparation 

Immunoblotting: In order to determine the ability of using these antibodies to characterize 

immunohistochemical patterns in the opossum we have chosen to immunoblot the opossum 

brain with three of the antisera. Thus, brain protein samples from adult female rats and adult 

female opossums were utilized in this portion of the studies. Following decapitation, brains 

were removed from the calvaria, blocked in the coronal plane at the level of the mammillary 

body into forebrain and hindbrain samples, and frozen in liquid nitrogen. Brains were 

homogenized in sample buffer (50 mM Tris-HCl, 10% glycerol, 0.05% SDS, pH 6.9) and 

protein was extracted as described previously (Sakaguchi et al., 1989; Elmquist et al., 1994). 
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Immunohistochemistry: Brains were collected from 1, 3, 5, 7, 9, 11, 13, and 15 PN 

opossums. Animals were anesthetized by cooling in a -15°C freezer and then decapitated. 

Heads were placed in Zamboni's fixative for 48 hours at 23°C. After fixation, the heads were 

infiltrated with 30% sucrose for 24 hours at 4''C. Brains were cut into 20 |im thick coronal 

sections on a cryostat (Reichart-Jung 2800N). Sections were thaw mounted onto poly-L-

lysine (Sigma) coated slides and stored at 4°C until processed for immunohistochemistry. 

Twenty-five day old opossums were anesthetized by cooling. After cooling, animals 

were perfused transcardially with 15 ml of Zamboni's fixative. The heads were isolated and 

postfixed in Zamboni's fixative for 48 hours. After fixation the brains were processed as 

described above. 

Antiserum 

Antibodies used in this study have been previously characterized in the rat. Table 2.1 

lists the antibody dilution used for immunohistochemistry and immunoblotting, source, 

antibody host, and appropriate references. 

Immunoblotting 

Characterization of antigens was performed using SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) and immunoblotting procedures. The protocol utilized for 

immunoblotting was a modification of that reported previously for the developing opossum 

brain (Elmquist et al., 1994). Brain protein homogenates were boiled in SDS reducing buffer 

(0.5M Tris-HCl, 10% SDS, 10% glycerol, 5% B-mercaptoethanol, and 2.5% bromophenol 

blue) for 4 minutes followed immediately by centrifiigation. Each protein sample (20 |il) was 

loaded into respective lanes of a four percent stacking gel and separated on a ten (p65), twelve 

(p38), or fifteen (SNAP-25) percent separating gel using a vertical Mini-Protean n system 

(BIORAD). Gel electrophoresis was carried out under conditions described by Laemmli 

(1970). Following electrophoresis, proteins were transferred onto a polyvinylidene difluoride 

(PVDF; BIORAD) membrane in transfer buffer (25 mM Tris-HCl, 192 mM glycine, 20% v/v 
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Table 2.1. Antisera utilized for Immunohistochemistry and Immunoblotting 

Name Immunohistochemistry Immunoblotting Source Antibody Reference 

Host 

GAP-43 1:2,000 NA Boehringer Mouse Goslin et al., 1988 

Mannheim Goslinetal, 1990 

MAP-2 1:1,000 NA Boehringer Mouse Binder et al., 1986 

Mannheim Caceres et al., 1986 

PHF-1 1:30 NA S Greenberg Mouse Greenberg &. Davies, 1990 

(Tau-1) Greenberg et al., 1992 

SNAP-25 1:2,000 1:1,000 M. C. Wilson Rabbit Catsicas et al., 1991 

Oyleretal., 1991 

Synaptophysin 1:2,000 1:1,000 A. J. Czernik Mouse Jahn et al., 1985 

(p38) 

Synaptotagmin 1:1,000 1:1,000 R. Jahn Mouse Perin et al., 1990 

(p65) Broseetal., 1992 
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methanol, pH 8.3). Following transfer, membranes were incubated in blocking buffer (1% 

BSA and 0.05% Tween-20 in Tris-buffered saline; TBST) for 2 hours at room temperature 

with gentle agitation. The blots were incubated overnight at A'C in one of the primary antisera 

described (see Table 2.1). After washing in TBST, blots were then exposed to a biotinylated 

secondary antibody (Vector; 1:30(X)) generated against the host of the primary antibody (either 

goat anti-rabbit or horse anti-mouse) for one hour at room temperamre. After washing in 

TBST, amplification of the signal was achieved by using a solution of streptavidin (Vector; 2 

mg/ml, 1:3000) and biotinylated alkaline phosphatase (Vector; 1:3(X)0) at room temperature for 

one hour. Irrmiunoreactive bands were visualized with 5-bromo-4-chloro-3-indolyl phosphate 

(BCIP) / Nitroblue tetrazolium (NBT) alkaline phosphatase color development reagents 

(BIORAD) for 5-10 minutes at room temperature. Apparent molecular weights were estimated 

by comparison with biotiiiylated molecular weight standards (BIORAD) run concurrently on 

each gel. 

Immunohistochemistry 

The protocol utilized for immunohistochemistry was a modification of that previously 

reported (Fox et al., 1991a; Elmquist et al., 1992, 1994) by our laboratory for the Brazilian 

opossum brain. The slide mounted sections were rinsed, incubated with a H2O2 solution to 

remove endogenous peroxidase activity, exposed to normal serum as a blocking agent and then 

incubated in primary antibody for 20 hours at room temperature (see Table 2.1 for dilution 

used). After adequate washing, the tissue sections were incubated in either horse anti-mouse 

(Vector; 1:600) or goat anti-rabbit IgG (Vector; 1:600) (depending upon the species that the 

primary antisera was generated in) for 2 hours at room temperature, rinsed, and reacted with 

avidin-biotin complex (Vector Elite Kit; 1:200) at room temperamre for an additional hour. 

After washing, the tissue sections were stained by exposing them to a substrate composed of a 

3,3' diaminobenzidine tetrahydrochloride (DAB; Sigma), nickel sulfate (Fisher Scientific), and 

H2O2, all dissolved in 0.1 M sodium acetate. After staining for 10-18 minutes, the reaction 
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was terminated by rinsing the slides in two successive rinses of 0.9% saline. Sections were 

counterstained with 0.5-1.0% neutral red (Fisher Scientific) and then dehydrated in graded 

alcohols, cleared in xylene and coverslipped with permount mounting media (Fisher Scientific) 

and analyzed and photographed with a light microscope (Axiophot, Carl Zeiss). Each run 

contained negative controls generated by the omission of the primary antiserum. Omission of 

the primary antisera resulted in no specific staining at any of the ages examined. 

Analysis of Immunohistochemical Tissue 

Sections were examined with a Zeiss Axiophot microscope and regions containing 

immunoreactivity were identified and recorded on maps of coronal sections of the opossum 

brain (Fox et al., 1991a,b; Elmquist et al., 1992, 1994) as needed. Structures were identified 

by reference to an atlas of the developing rat brain (Paxinos et al., 1991; Paxinos et al., 1994; 

Altman and Bayer, 1995c). 

Digital Processed Figures 

Figure 1 was produced digitally on a Macintosh 660A V computer. To create this 

figure, immunoblots were digitized with a flatbed scanner (Hewlett Packard Scanjet II) and 

transferred to Adobe Photoshop v2.5. Images were then cropped to size and saved as tiff files 

for labeling. Aldus Freehand v3.0 was utilized for labeling the figure and the final image was 

printed on an Imagesetter at 2400 dots per inch by 150 lines per inch. 

Results 

Immunoblot Analysis 

Antisera generated against synaptophysin (Fig. 2.1 A), synaptotagmin (Fig. 2. IB), and 

SNAP-25 (Fig. 2.1C) demonstrated generally good cross reactivity between the rat and the 

Brazilian opossum. These antibodies each detected a major band with the apparent molecular 

weights for each synaptophysin, synaptotagmin, and SNAP-25 (Fig. 2.1) as has been shown 

in the rat. Previously, a molecular weight of 38 kDa was reported for synaptophysin (Jahn et 

al., 1985), 65 kDa for synaptotagmin (Matthew et al., 1981), and 25 kDa for 
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Figure 2.1. Representative immunoblots demonstrating cross reactivity for (A) 

synaptophysin-like immunoreactivity, (B) synaptotagmin-like 

immunoreactivity, and (C) synaptosomal-associated protein 25 (SNAP-25)-Iike 

immunoreactivity. Antibodies detected bands with molecular weights similar to 

molecular weights obtained from previous reports. Molecular weight markers 

are indicated at the right of each blot. Labels under each lane indicate the 

species and region from which the protein samples were obtained. 

Abbreviations: RFb, Rat forebrain; OFb, Opossum forebrain; RHb, rat 

hindbrain; and OHb, Opossum hindbrain. 
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SNAP-25 (Oyleretal., 1991). 

Immimohistochemical Analysis 

Distribution of Synaptic Vesicle-Associated Proteins: Synaptophysin and Synaptotagmin 

At the time of birth the brain of Monodelphis is extremely immature, and grows and 

matures rapidly during the first month of postnatal life. Synaptophysin-like immunoreactivity 

and synaptotagmin-like immunoreactivity were both seen in the postnatal brainstem at all ages 

examined (Figs. 2.2 and 2.3). In the facial motor nucleus, synaptophysin-like 

immunoreactivity and synaptotagmin-like immunoreactivity were both absent from the facial 

motor nucleus until 9 PN (Figs. 2.2A and 2.3A). The immunoreactivity gradually increases in 

the nucleus until 15 PN when the nucleus contains the full complement of immunoreactive 

elements (Figs. 2.2C and 2.3C). In general, immunoreactive elements for both synaptophysin 

and synaptotagmin appear in the facial motor nucleus initially at the border of the facial motor 

nucleus with increasing immunoreactivity towards the central region of the nucleus (Fig. 2.4). 

In addition, with increasing age the immunoreactive elements appear in the medial region 

before appearing in the lateral aspects (Figs. 2.4B-E). Synaptophysin-like immunoreactivity 

and synaptotagmin-like immunoreactivity both appeared to have a similar distribution (Figs. 

2.2 B,D and 2.3 B,D) in the facial motor nucleus. Specifically, synaptophysin-like 

immunoreactivity and synaptotagmin-like immunoreactivity were always absent from the facial 

motoneuron cell bodies and were distributed within the neuropil of the facial motor nucleus by 

15 PN (Figs. 2.2 C,D and 2.3 C,D). 

In the hypoglossal motor nucleus immunoreactivity for synaptophysin and 

synaptotagmin were observed at all ages examined (Figs. 2.2E-H and 2.3E-H). The 

immunoreactivity present in the hypoglossal motor nucleus did not change during the first 

fifteen days postnatally (Figs. 2.2E,G and 2.3E,G) as seen for the facial motor nucleus. As 

seen for the facial motor nucleus, synaptophysin-like immunoreactivity and synaptotagmin-like 

immunoreactivity displayed a similar distribution (Figs. 2.2F,H and 2.3F,H), which was 
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Figure 2.2. Immunoreactivity for synaptophysin is absent until 9 days postnatal (PN) and 

becomes apparent in the facial motor nucleus by 15 PN. Photomicrographs 

demonstrate synaptophysin-like immunoreactivity in the developing facial motor 

nucleus at 5 PN at a low (A) and higher (B) magnification and at 15 PN at a 

low (C) and higher (D) magnification. In contrast, immunoreactivity for 

synaptophysin is found in the developing hypoglossal motor nucleus at all ages 

examined. Photomicrographs display synaptophysin-like immunoreactivity in 

the developing hypoglossal motor nuclei at 5 PN at low (E) and higher (F) 

magnifications and at 15 PN at low (G) and higher (H) magnifications. 

Synaptophysin-like immunoreactivity in found in the neuropil surrounding 

unstained cell bodies (asterisks). High magnification photomicrographs are 

taken from the left nuclei of interest (box). Note that the cartilage of the 

developing skull is dark due to counterstaining of the tissue and does not 

represent specific immunoreactivity. Scale bars = 150 |im in A, C, E, and G, 

and 15 |xm in B, D, F, and H. 
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Figure 2.3. Immunoreactivity for synaptotagmin is absent until 9 days postnatal (PN) and 

becomes apparent in the facial motor nucleus by 15 PN following a similar time 

course of expression as found for synaptophysin. Synaptophysin-like 

immunoreactivity is demonstrated in the photomicrographs for the developing 

facial motor nucleus at 5 PN at low (A) and higher (B) magnifications and at 15 

PN at low (C) and higher (D) magnifications. Immunoreactivity for 

synaptotagmin is found in the developing hypoglossal motor nucleus at all ages 

examined similar to that seen for synaptophysin. Photomicrographs display 

synaptotagmin-like immunoreactivity in the developing hypoglossal motor 

nuclei at 5 PN at low (E) and higher (F) magnifications and at 15 PN at low 

(G) and higher (H) magnifications. Synaptotagmin-like immunoreactivity in 

the neuropil surrounds unstained cell bodies (asterisks). High magnification 

photomicrographs are taken of the left nuclei of interest (box). Note that the 

cartilage of the developing skull is dark due to counterstaining of the tissue and 

does not represent specific immunoreactivity. Scale bars = 150 |im in A, C, E, 

and G, and 15 p.m in B, D, F, and H. 
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Figure 2.4. Photomicrographs demonstrating synaptophysin-Iike immunoreactivity in the 

deveiping facial motor nucleus. Immunoreactive elements initially appear 

around the border of the facial motor nucleus. With increasing age there is an 

increase in immunoreactivity towards the central region filling in the nucleus by 

15 days postnatal (FN) (F). In addition, the immunoreactive elements appear in 

the medial region before appearing in the lateral aspects, 5 FN (A), 7 FN (B), 9 

FN (C), 11 FN (D), and 13 FN (E). Scale bar = 200 ^im. 
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always absent from the cell bodies, and was restricted to the neuropil of the hypoglossal motor 

nucleus. 

Distribution of Markers ofAxonal Growth: SNAP-25 and GAP-43 

Synaptosomal-associated protein 25-like immunoreactivity (SNAP-25-IR) 

demonstrated a pattern of expression similar to that for the synaptic vesicle-associated proteins. 

However, the time course of expression in the facial motor nucleus for SNAP-25 was later 

than that for the synaptic vesicle-associated proteins. SNAP-25-IR was absent from the facial 

motor nucleus until 15 PN (Fig. 2.5A). The SNAP-25-IR increased in the facial motor 

nucleus between days 15 PN through 25 PN (Fig. 2.5C). In general, the immunoreactivity for 

SNAP-25 appeared first in the borders of the facial motor nucleus. With increasing age there 

was a gradual increase in immunoreactivity from the peripheral to the central regions of the 

facial motor nucleus. In addition to the increasing area of immunoreactive elements they appear 

in the medial region before in the lateral region. 

The hypoglossal motor nucleus contained SNAP-25-IR from day I PN (Figs. 

2.5E,G). From 1-5 PN immunoreactivity for SNAP-25 was dispersed, however, 

immunoreactive elements became more common in the hypoglossal motor nucleus after 5 PN 

(Figs. 2.5E-H). 

Immunoreactivity for GAP-43 (GAP-43-IR) resembled that for the synaptic vesicle-

associated proteins synaptophysin and synaptotagmin in their time course of expression. The 

GAP-43-IR was seen at all ages studied beginning at 1 PN in the developing brainstem. 

However, the region of the developing facial motor nucleus is virtually absent of GAP-43-IR 

until 11 PN (Fig. 2.6A,B). From 11 through 15 PN (Fig. 2.6C,D) the facial motor nucleus 

becomes infiltrated with immunoreactivity. Immunoreactive elements for GAP-43 appear in 

the facial motor nucleus in the same pattern as observed for synaptophysin, synaptotagmin, 

and SNAP-25 with immunoreactivity appearing first at the borders of the nucleus and also in a 

medial to lateral increase over time. In addition, the GAP-43-IR appears to be restricted to the 
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Figure 2.5. Photomicrographs demonstrating synaptosomal-associated protein 25-Iike 

inmiunoreactivity (SNAP-25-IR) in the developing facial motor nucleus. The 

developing facial motor nucleus lacks SNAP-25-IR until 14 days postnatal 

(PN). Immunoreactivity is found throughout the nucleus at 25 PN. 

Immunoreactivity for SNAP-25 is displayed at 5 PN at low (A) and higher (B) 

magnifications and at 25 PN at low (C) and higher (D) magnifications. The 

developing hypoglossal motor nucleus displays SNAP-25-IR consistently from 

the day of birth. Photomicrographs show SNAP-25-IR in a 5 PN opossum at 

low (E) and higher (F) magnifications and a 15 PN opossum at low (G) and 

higher (H) magnifications. Immunoreactivity for SNAP-25 is found in the 

neuropil surrounding unstained cell bodies (asterisks). High magnification 

photomicrographs are taken of the left nuclei of interest (box). Note that the 

cartilage of the developing skull is dark due to counterstaining of the tissue and 

does not represent specific immunoreactivity. Scale bars = 150 ^im in A, C, E, 

and G, and 15 |i,m in B, D, F, and H. 
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Figure 2.6. Immunoreactivity for growth-associated phosphoprotein-43 (GAP-43-IR) is 

absent until 9 days postnatal (PN) and fills in the facial motor nucleus by 15 

PN. Photomicrographs demonstrate GAP-43-IR in the developing facial motor 

nucleus at 7 PN at low (A) and higher (B) magnifications and at 15 PN at low 

(C) and higher (D) magnifications. In contrast, GAP-43-IR is observed in the 

developing hypoglossal motor nucleus at all ages examined. Photomicrographs 

display GAP-43-rR in the developing hypoglossal motor nucleus at 5 PN at low 

(E) and higher (F) magnifications and at 15 PN at low (G) and higher (H) 

magnifications. Immunoreactivity for GAP-43 is found in the neuropil 

surrounding unstained cell bodies (asterisks). High magnification 

photomicrographs are taken of the left nuclei of interest (box). Note that the 

cartilage of the developing skull is dark due to counterstaining of the tissue and 

does not represent specific immunoreactivity. Scale bars = 150 p.m in A, C, E, 

and G, and 15 |J.m in B, D, F, and H. 
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neuropil (Figs. 2.6 C,D) where growing axons would be expected. 

In contrast, immunoreactivity for GAP-43 is present in the hypoglossal motor nucleus 

at all ages studied beginning at 1 PN (Figs. 2.6E-H). The intensity of inmiunoreactivity is 

more abundant at 5 PN (Fig. 2.6E) but appears to be less uniform when compared to that seen 

at 15 PN (Fig. 2.6G). In addition, the immunoreactivity appears to be restricted to the neuropil 

of the hypoglossal motor nucleus (Figs. 2.6F,H). 

Distribution of microtubule associated proteins: PHF-1 (Tau) and MAP-2 

In the facial motor nucleus, utilization of the PHF-1 antibody indicated Tau-like 

immunoreactivity (Tau-IR) and exhibited a similar time course of expression to that for 

synaptophysin and synaptotagmin. The Tau-IR was absent from the region of the facial motor 

nucleus through 9 PN (Fig. 2.7A,B) and immunoreactive elements appear in the nucleus over 

time in the same pattern as synaptophysin, synaptotagmin, SNAP-25, and GAP-43. At 15 PN 

(Figs. 2.7C,D), the facial motor nucleus contains immunoreactivity for Tau throughout the 

nucleus. Immunoreactivity appeared to be localized to the neuropil presumably were axons 

traveling to the facial motor nucleus would be localized and inmiunoreactivity was absent from 

the facial motoneuron cell bodies (Figs. 2.7B,D). 

In contrast to the pattern of expression of Tau-IR in the facial motor nucleus, 

immunoreactivity in the hypoglossal motor nucleus was observed at all ages beginning on I 

PN (Figs. 2.7E,G). The immunoreactivity appeared to be localized to the neuropil of the 

hypoglossal motor nucleus and was absent from the hypoglossal motoneuron cell bodies (Figs. 

2.7F,H). 

MAP-2-like immunoreactivity (MAP-2-IR) revealed a different pattern of expression in 

the facial motor nucleus. The MAP-2-IR was present in the facial motor nucleus at all ages 

investigated beginning at 1 PN (Figs. 2.8A,C). Specifically, at higher magnification 

immunoreactivity was noted in the neuropil and weakly in the cell bodies of the motoneurons 

throughout the extent of the nucleus (Figs. 2.8B,D). 
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Figure 2.7. Photomicrographs demonstrating Tau-like immunoreactivity (Tau-IR) in the 

developing facial motor nucleus. The developing facial motor nucleus does not 

contain Tau-IR until 9 days postnatal (PN)- Immunoreacitivity is located 

throughout the nucleus by 15 PN following a similar time course of expression 

to that of synaptophysin, synaptotagmin, SNAP-25, and GAP-43. 

Photomicrographs of a 5 PN opossum at low (A) and higher (B) 

magnifications and a 15 PN opossum at low (C) and higher (D) magnifications 

are shown. In addition, Tau-IR follows a similar time course of expression to 

synaptophysin, synaptotagmin, SNAP-25, and GAP-43 in the developing 

hypoglossal motor nucleus. At all ages examined Tau-IR is present in the 

hypoglossal motor nucleus as observed at 5 PN at low (E) and higher (F) 

magnifications and 15 PN at low (G) and higher (H) magnifications. 

Immunoreactivity for Tau is found in the neuropil surrounding unstained cell 

bodies (asterisks). High magnification photomicrographs are taken of the left 

nuclei of interest (box). Note that the cartilage of the developing skull is dark 

due to counterstaining of the tissue and does not represent specific 

immunoreactivity. Scale bars = 150 |im in A, C, E, and G, and 15 |im in B, D, 

F, and H. 
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Figure 2.8. Microtubule-associated protein-2-like immunoreactivity (MAP-2-IR) in the 

developing facial motor nucleus and hypoglossal motor nucleues is observed 

from the day of birth (1 PN). Immunoreactivity for MAP-2 in the developing 

facial motor nucleus is shown photomicrographs at 5 PN at low (A) and higher 

(B) magnifications and at 10 PN at low (C) and higher (D) magnifications. 

Photomicrographs also display MAP-2-IR in the developing hypoglossal motor 

nucleus at 5 PN at low (E) and higher (F) magnifications and at 10 PN at low 

(G) and higher (H) magnifications. Immunoreactivity for MAP-2 is found in 

the neuropil surrounding weakly and/or unstained cell bodies (asterisks). High 

magnification photomicrographs are taken of the left nuclei of interest (box). 

Note that the cartilage of the developing skull is dark due to counterstaining of 

the tissue and does not represent specific immunoreactivity. Scale bars = 150 

|im in A, C, E, and G, and 15 |i.m in B, D, F, and H. 
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Similarly in the hypoglossal motor nucleus immunoreactivity for MAP-2 was present at 

all ages studied (Figs. 2.8E,G) and was observed to be localized within the neuropil and 

weakly in the cell bodies of the motoneurons throughout the nucleus (Figs. 2.8F,H). 

Discussion 

Temporal Expression of Developmental Markers 

Immunohistochemical analysis revealed the distribution of markers of synaptogenesis 

in the developing facial motor nucleus and hypoglossal motor nucleus in the Brazilian opossum 

brain (Fig. 2.9). Specifically, the two synaptic vesicle-associated proteins, synaptophysin and 

synaptotagmin, showed a similar pattern and time course of expression within each of the 

cranial motor nuclei investigated. Immunoreactivity for each synaptophysin and synaptotagmin 

was absent from the facial motor nuclei until 15 PN and gradually increased after this time 

point. Conversely, immunoreactivity in the hypoglossal motor nuclei for both synaptophysin 

and synaptotagmin were observed from the day of birth. These results are interesting since 

previous studies have concluded that the initial expression of synaptophysin is a marker of 

synaptogenesis. Quantitative immunoblotting for synaptophysin has demonstrated an 80-fold 

increase in protein levels from birth to adulthood, following a time course of accumulation that 

suggests that the initial synaptophysin expression is correlated with synaptogenesis (Knaus et 

al., 1986). In addition, immunoreactivity for synaptophysin is expressed in virtually all 

mature nerve terminals (Navone et al., 1986). Before cell to cell contact occurs, both 

synaptophysin and synapsin I are particularly concentrated in the distal axon and in growth 

cones (Hetcher et al., 1991). Due to these results, our observations indicate that there maybe a 

differential time course of synaptogenesis in the facial and hypoglossal motor nuclei. 

In addition to labeling synaptic vesicle-associated proteins, antibodies against GAP-43 

have been utilized as a marker of axonal growth and synaptogenesis (Dani et al., 1991). In the 

Brazilian opossum, GAP-43-IR follows a similar time course of expression as synaptophysin, 

synaptotagmin, and Tau during development of the facial motor nucleus. GAP-43-IR is absent 
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Figure 2.9. Time line summarizing immunoreactivity for synaptophysin, synaptotagmin, SNAP-25, GAP-43, Tau, and MAP-

2 binding in the developing facial motor nucleus (FMN) and hypoglossal motor nucleus (HMN) of the Brazilian 

opossum. Intensity of the line correlates to the relative amount of immunoreactivity in each of the motor nuclei at 

that specific postnatal age (ie. first day of postnatal life = 1 PN). 
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in the newborn facial motor nucleus and appears by 15 PN. In addition, GAP-43-IR is similar 

in expression to immunostaining for synaptophysin, synaptotagmin, and Tau in the 

hypoglossal motor nucleus during the first two weeks of postnatal life in the Brazilian 

opossum. Previous studies indicate that GAP-43-IR and synaptophysin-IR have a similar 

pattem of expression (Masliah et al., 1991). 

Paired helical filaments contain Tau (t) as its principal constituent (and all of the normal 

t isoforms). Phosphorylation of normal t is reported to be responsible for PHF properties 

(Greenberg et al., 1992) and is present in developing brains but not in the brains of adults. 

Tau immunoreactivity, which defines axons (Greenberg et al., 1992; Nelson et al., 1993), 

revealed a similar time course of expression to that for synaptophysin and synaptotagmin 

within each motor nucleus investigated. Our results with this Tau antibody indicate that axons 

were not in the facial motor nucleus region until after 10 PN, with an increasing amount after 

that period. However, axons were present in the hypoglossal motor nucleus from day one of 

postnatal life. 

Immunoreactivity for Tau is transiently expressed by immature neurons during 

development (Pope et al., 1994) and is not found in mature neurons (Pope et al., 1993). We 

believe that this expression of Tau during development explains why immunoreactivity for Tau 

is not seen in the region of the developing facial motor nucleus from 1 to 15 PN. Specifically, 

we propose that since the facial motoneuron axons appear to innervate their targets by 1 PN 

they must have completed their transition from "immature" to "mature" neurons losing Tau 

expression. The delayed onset of immunoreactivity for Tau must be from the incoming 

neurons that innervate the facial motor nucleus and do not reach these neurons until 15 PN. 

The labeling of the afferent projections is consistent with the other markers of synaptic vesicle-

associated proteins, synaptic membrane proteins, and growth cone-associated proteins. 

Our results for immunohistochemistry utilizing the markers of synaptic vesicle-

associated proteins and axons have the same time pattem of expression for the facial motor 
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nucleus. With the first appearance of the markers of synaptic vesicles in the neuropil, these 

results indicate that axon terminals are developing in the region of the facial motor nucleus 

during the first 15 days of postnatal life. The SNAP-25-IR also demonstrated a similar pattern 

of expression but followed a slightly later time course. This resist may indicate that axons 

grow into the facial motor nucleus (or become immunoreactive) and subsequently form 

synapses onto the facial motoneuron cell bodies or dendrites. 

Current models for regulated vesicle fusion and exocytosis in eukaryotic cells include 

both synaptotagmin and SNAP-25 as integral components during synaptic vesicle exocytosis 

(O'Connor et al., 1994; Bark and Wilson, 1994). The presence of immunoreactivity for 

synaptic vesicle-associated proteins, synaptic membranes, growth cones, and microtubule-

associated proteins would suggest that synapses are formed after day 15 PN. While the 

absence of immunoreactivity cannot exclude synapses from the facial motor nuclei, two studies 

demonstrate that synapses devoid of immunoreactivity would have decreased function. 

Mutants with a deficiency for synaptotagmin are lacking excitation produced secretion at the 

synapse (Broadie et al., 1994; Geppert et al., 1994). Synapses are present in these mutants but 

only spontaneous activity exists at those synapses. To confirm and extend our observations, 

electron microscopy of the developing facial motor nucleus is being conducted. 

Development of the Facial and Hypoglossal Motor Nuclei 

Neurogenesis of the facial and hypoglossal motor nuclei have been investigated in detail 

in the neonatal rat. The facial motor nucleus has a neurogenic gradient with the rostral neurons 

being "older" and the caudal neurons being "younger" (reviewed in Altman and Bayer, 1995a). 

Specifically the rostral facial motoneurons are generated on embryonic days 12 (El2; 40%) and 

13 (60%) while the caudal facial motoneurons are generated on E12 (10%), E13 (85%), and 

EI4 (5%). Neurogenesis of the hypoglossal motor nucleus occurs on El 1 (10%) and E12 

(90%). Thus, the hypoglossal motoneurons are formed slightly earlier than the facial 

motoneurons. 



www.manaraa.com

44 

Migration of facial motoneurons in the embryonic rat is also well known. After 

completion of neurogenesis of facial motoneurons on E13 or El4, the growth of efferents 

precedes the perikaryal migration through the brainstem which occurs at EI5 (Altman and 

Bayer, 1982; Altman and Bayer, 1995b). Perikaryal migration of facial motoneurons takes an 

initial course directed at a right angle away from their efferent fibers. This complex pattern of 

migration differs dramatically from that of neurons migrating to the trigeminal nuclei. 

Hypoglossal motoneurons have a limited migration after neurogenesis from the fourth ventricle 

to the adjacent location of the hypoglossal motor nucleus. 

Temporal Expression of Function 

Previous reports using retrograde tract tracing of facial motoneurons in the neonatal rat 

indicate that the facial motoneurons innervate their respective target muscles by as early as 5 

FN (Yokosuka and Hayashi, 1992; Senba et al., 1987). In the mouse, the facial motoneurons 

are connected to their target muscles by embryonic day 17, before the reduction of 

motoneurons through cell death occurs (Ashwell and Watson, 1983). We have obtained 

preliminary results indicating that facial motoneurons take up peripherally injected cholera toxin 

from their target muscles by 1 PN and that the morphology of the facial motor nucleus is adult­

like by 5 PN (J. J. Swanson et al., 1995). In addition, we have preliminary results 

demonstrating that Brazilian opossum pups as young as 10 PN can regulate the quantity of 

milk ingested (M. C. Kuehl-Kovarik and C. D. Jacobson, unpublished observations). 

In the neonatal rat, facial motoneurons have been shown to transiendy express a 

number of compounds and receptors. Tribollet and coworkers (1991) have reported a transient 

expression of vasopressin binding sites between E17 and 19 PN in the facial nucleus of the rat. 

In extracellular recordings of facial motoneurons, the application of arginine vasopressin 

resulted in neuronal excitation (acting through a V i type receptor) indicating formation of 

functional postsynaptic receptors and second messenger systems. In addition, we have 

reported a transient expression of cholecystokinin (CCK) binding sites in the facial motor 
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nucleus of the Brazilian opossum (Kuehl-Kovarik et al., 1993a) and neonatal rat (Kuehl-

Kovarik and Jacobson, 1995). Finally, Yokosuka and coworkers (1992) have described 

estrogen-receptor-like-immunoreactivity being transiently expressed in the facial motor nucleus 

of rat pups from postnatal day 1 through 11. Consistent with the receptor studies, the 

peptidergic and aminergic innervation of the facial motor nucleus in the neonatal rat shows an 

increase during the first week of postnatal life, with an established innervation pattern 

appearing by the tenth postnatal day (Senba et al., 1985). 

Thus, many receptors are transiently expressed, although, the significance of this 

transient expression of the receptors is not known. Taken together with the results presented in 

this paper, we believe that the transient expression of receptors in the facial motor nucleus may 

demonstrate that the facial motor nucleus is physiologically active and the receptors may be 

regulating the activity of facial motoneurons independent of synaptic connections that are 

simultaneously being made during the postnatal period. 

Summary 

Characterization of synaptogenesis in the facial motor nucleus and hypoglossal motor 

nucleus provides a unique opportunity to study changes in motoneuron function before, 

during, and after synaptic formation. Our findings indicate that the facial motor nucleus, in 

contrast to the hypoglossal motor nucleus, does not have a synaptic or "classical" innervation 

during postnatal brain morphogenesis. Synaptogenesis appears following a time when facial 

muscle movement takes place. Thus, there is a delayed maturation of the facial motor nucleus 

circuitry that may allow for an additional layer of plasticity in the regulation of the 

neuromuscular control of food intake. Further, these results suggest that facial motor nucleus 

function/activity is regulated in a novel or distinct manner as compared to that of the 

hypoglossal during brain development. 
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CHAPTER THREE. DEVELOPMENT OF THE FACIAL AND 

HYPOGLOSSAL MOTOR NUCLEI IN THE NEONATAL 

BRAZILIAN OPOSSUM BRAIN 

A paper to be submitted for publication in Developmental Brain Research 

Jack J. Swanson, M. Cathleen Kuehl-Kovarik, Joel K. Elmquist, and Carol D. Jacobson 

Abstract 

The development of the facial and hypoglossal motor nuclei were examined in the 

neonatal Brazilian opossum (Monodelphis domestica), a marsupial in which postnatal central 

nervous system development has been well characterized. In this study, we utilized postnatal 

injection of the retrograde tracer cholera toxin subunit B (CtB) to characterize the formation of 

the facial and hypoglossal motor nuclei in the developing neonatal opossum brainstem. 

Injections of CtB were made into the cheek / lip region or tongue of opossum pups to 

retrogradely label the facial or hypoglossal motor nuclei, respectively. Following a two hour 

survival time, facial motoneurons in newborn opossum pups (1 PN) exhibited CtB labeling, 

with their cell bodies were essentially localized near the developing cranial abducens nucleus. 

At 3 and 5 PN, following a forty-eight hour survival time, CtB labeled facial motoneurons 

were observed in and migrating to the region of the adult facial motor nucleus in the rostral 

medulla. Between 7 and 10 PN, almost all facial motoneurons had migrated to their destination 

within the facial motor nucleus. Hypoglossal motoneurons also exhibited CtB labeling from 1 

PN, however, their cell bodies were localized within the hypoglossal motor nucleus at the 
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earliest age examined. Double label studies, to examine guidance of facial motoneurons during 

migration, demonstrated that CtB labeled facial motoneurons are in close proximity to 

vimentin-Iike immunostained radial glial fibers during migration. These results suggest: 1) the 

migration of facial motoneurons to the facial motor nucleus is a postnatal event, 2) that efferent 

projections from facial and hypoglossal motoneurons project into the peripheral region of their 

target muscles from the day of birth, and 3) facial motoneurons migrate to their destination in 

the brainstem thereafter, in close association with radial glial fibers. 

Introduction 

The development of cranial motor systems within the central nervous system (CNS) 

consists of a complex process of events that includes neurogenesis, neuronal migration, cell 

death, and the establishment of both afferent and efferent connections. The investigation of the 

facial and hypoglossal oromotor nuclei during development will further our understanding of 

cranial motor system development. In order to examine the development of the facial motor 

nucleus (FMN) and hypoglossal motor nucleus (HMN), this study utilizes cholera toxin 

subunit B (CtB) as a retrograde tracer to identify facial and hypoglossal motoneurons in the 

developing opossum CNS. 

In general, the study of the timecourse of the developing facial and hypoglossal motor 

systems in placental mammals would necessitate the use of in utero procedures. Marsupials 

present an attractive alternative to study neuroembryological events because they are bom in an 

extremely inmiature state with a protracted postnatal period of neurogenesis [27, 31,35,68]. 

Our laboratory utilizes the Brazilian gray short-tailed opossum, Monodelphis domestica, a 

small pouchless marsupial that breeds well in the laboratory. The absence of a pouch makes 

the young very accessible to manipulations for in vivo, "ex utero" developmental studies. The 

ontogeny of several neurochemical systems in Monodelphis has been previously described by 

our laboratory [14-16, 21, 23, 27-30, 34,49]. In addition, Monodelphis is being used to 

study development of multiple CNS regions including the olfactory bulbs [10,51], visual 
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system [26, 60, 62, 67, 72, 80], cerebral cortex [16, 63], hypothalamus [14, 15, 20-23, 27-

30, 60, 64], brainstem [36, 70], cerebellum [13], and spinal cord[ll, 44, 46, 66, 73, 77]. 

Our recent studies have focused upon the FMN during development. Previously we 

have shown, using markers of synapse-associated proteins, that the FMN does not appear to 

receive afferent innervation until 15 PN, and mature synapses are formed between 15 and 25 

PN, as compared to the HMN which appears to receive afferent innervation from birth [70]. 

Ultrastracture examination of the facial and hypoglossal motor nuclei during development 

confirms postnatal synaptogenesis within the FMN but also wi±in the HMN with increasing 

age [50]. In addition, facial motoneurons transiently express cholecystokinin (CCK) binding 

sites between day 1 of postnatal life (1 PN) and 35 PN, disappearing by 60 PN and returning 

in the adult Brazilian opossum [34, 36]. Preliminary results of this study have been described 

in abstract form [69]. 

Opossum pups are bom in an extremely immature state, yet already have functional 

systems for suckling and respiration. This study examines some of the cranial motor systems 

that might contribute to suckling behavior in these developing neonates. Suckling behavior 

would be controlled by the oromotor system comprised of three motor nuclei of cranial nerves: 

trigeminal (5), facial (7), and hypoglossal (12). The trigeminal motor system was not 

examined because developing Brazilian opossum pups lack a developed, functional dentary-

squamosal joint until after 14 PN [19,45]. Since suckling behavior begins at birth, the 

trigeminal component probably is not utilized for this behavior during that period before joint 

formation. Hypoglossal motoneurons innervating the tongue must play a crucial role in 

suckling mechanisms [24,45]. In addition to the tongue musculature, the facial motor system 

was examined because other facial muscles might be utilized in suckling behaviors. 

Motoneurons within the FMN innervate the muscles of facial expression, specifically 

the muscles of the ear, eyelids, nose, cheeks, lips, and the caudal digastricus [12]. Retrograde 

tract tracing describing the adult innervation from the FMN has been previously examined and 
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reported in multiple species [7, 37,52, 53, 65, 78,79]. In addition, these studies report that 

this innervation pattern forms a topographically ordered map in the FMN of the brush-tail 

opossum [53], cat [37, 52], monkey [79], mouse [7], and rat [78]. Throughout the studies 

there is general agreement that the caudal (auricular) muscles are innervated by motoneurons in 

the medial aspects of the FMN; dorsal (ocular) muscles are innervated by motoneurons in the 

dorsal aspects of the FMN; ventral muscles are innervated by motoneurons in the ventral 

aspects of the FMN; and the rostral (nasal) muscles are innervated by motoneurons in the 

lateral aspects of the FMN. 

Hypoglossal motoneurons innervate the intrinsic musculature of the tongue [12]. 

Previous studies have demonstrated that retrogradely labeled hypoglossal motoneurons result 

from an injection in the tongue of developing rat pups 6 days postnatal [65]. The somatotopic 

organization of the HMN has been investigated by retrograde degeneration [8], tract tracing [1, 

33], and cholinesterase histochemistry [38]. The studies are in general agreement that the 

dorsal aspects of the HMN innervate tongue retrusor muscles and the ventral aspects of the 

HMN innervate the tongue protrusor muscles. 

In the present study, we have retrogradely labeled the motoneurons from the facial and 

hypoglossal motor nuclei utilizing cholera toxin subunit B. Cholera toxin subunit B (CtB) has 

been demonstrated as a sensitive retrograde tracer [9, 17, 39-41,43, 74, 75, 79]. Cholera 

toxin subunit B was used as a retrograde tracer in this study because of its rapid speed of 

retrograde transport. The CtB is easily detected, immunohistochemically labeling neurons and 

distal dendrites with a Golgi-like appearance. The B subunit of the cholera toxin lacks the toxic 

effects of the intact toxin. In addition, CtB is taken up non-specifically by neurons that project 

to / through the injection site. With increasing survival time, CtB also labels neurons in the 

anterograde direction [6]. Studies have successfully utilized CtB for labeling peripheral 

nervous structures and cranial nerve motoneurons in the rat and monkey [1,43,79]. 

The guidance of migrating facial motoneurons is not fully understood. Previous 
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reports speculated that due to their migratory path facial motoneurons migrate without the aid of 

radial glial fibers [5]. In addition to migration, this study examined the location of migrating 

facial motoneurons in relation to the presence of vimentin immunostained radial glial cells 

during the migration of motoneurons. Radial glial cells are believed to act as physical scaffolds 

along which neurons can migrate (reviewed in [57-59]). In the developing cerebral cortex, 

cerebellum, and tectum, close associations have been observed between migrating neurons and 

radial glial cells [25, 54, 55,76]. 

Previous studies in our laboratory have examined glial development in the Brazilian 

opossum brain utilizing markers for glial fibrillary acidic protein (GFAP) and vimentin (VIM; 

[16]). Elmquist and colleagues [16] found that GFAP and VIM are reciprocally related during 

development of the opossum brain. At birth, vimentin-like immunoreactivity (VIM-IR) was 

present throughout the brain. The majority of VTM-IR was observed in cells having a radial 

glial appearance and thus they considered VIM-IR to be observed within cells of glial 

phenotypes. Utilizing results from the previous study, this study examines the patterns of 

vimentin-immunostained radial glial fibers and their possible role in the migration of cranial 

motoneurons. 

Materials and Methods 

Animals 

Developing Brazilian gray short-tailed opossums were obtained from a colony at Iowa 

State University. Animals used to start and maintain the breeding colony were obtained from 

the Southwest Foundation for Research and Education (San Antonio, TX). Opossums were 

individually housed in plastic cages, maintained at a constant temperature (26°C) with a 14:10 

light-dark cycle, with food and water available ad libitum (Ferret Growth Chow, Ralston 

Purina, Inc. Indianapolis, IN) [35]. The animals and procedures used were in accordance with 

tiie guidelines and approval of the Iowa State University committee on animal care. To obtain 

pups, male and female animals were paired for breeding for 14 days and then separated. 



www.manaraa.com

59 

Females were then checked daily at 1500 hours for the presence of pups (day of birth = day 1 

of postnatal life; 1 PN). After a gestational period of 14 days [18,42] pups are bom in an 

extremely immature state, open their eyes around 30 PN, and are weaned at 60 PN [64]. At 

least three animals from a minimum of three different litters were used at each of the time points 

for the immunohistochemical study. 

Retrograde labeling utilizing cholera toxin B subunit (CtB) 

Brazilian Opossum pups received unilateral injections of CtB in the cheek / lip region or 

tongue at various timepoints after birth. Mothers were anesthetized with Metofane inhalation 

so they could be stabilized on their backs to expose the litter of pups. Pups were injected while 

attached to the dam's nipple because they do not "re-attach" if separated at early ages. 

Injections of lOOnl of a 1% CtB (in 0.9% saline; List Biological Laboratories, Campbell, CA), 

solution were administered using a I ^il syringe (Hamilton Instruments, Reno, NV) into the 

cheek / lip or tongue region of the pups. Following injections the mother with her pups was 

returned to their cage. Following CtB injection, a survival period of 2 hours was used to 

retrogradely label 1 PN animals. For older animals (collected on 3, 5, 7, and 10 PN), a 

survival time of 48 hours following CtB injection was utilized for optimal retrograde labeling. 

Tissue Preparation 

Brains were then collected from the 1, 3, 5, 7, and 10 PN opossums following the 

appropriate survival time. Animals were anesthetized by cooling in a -15°C freezer and then 

decapitated. Heads were placed in Zamboni's fixative or 4% paraformaldehyde for 48 hours at 

23°C. After fixation, the heads were infiltrated with 30% sucrose for 24 hours at 4''C. Brains 

were cut into 20 |im thick coronal sections on a cryostat (Reichart-Jung 2800N). Sections 

were thaw mounted onto poly-L-lysine (Sigma, St. Louis, MO) coated slides and stored at 4°C 

until processed for inmiunohistochemistry. 
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Immunohistochemistry 

The protocol utilized for detection of CtB was a modification of that previously reported 

[14, 16,21,23,70] by our laboratory for the Brazilian opossum brain. Briefly, slide mounted 

sections were rinsed, incubated with a H2O2 solution to remove endogenous peroxidase 

activity, exposed to normal serum as a blocking agent, and then incubated in goat anti-cholera 

toxin subunit B primary antiserum at 1:5,000 (List Biological Laboratories) for 20 hours at 

room temperature. After adequate washing, the tissue sections were incubated in biotinylated 

donkey anti-goat IgG (Jackson Laboratories, West Grove, PA; 1:1000) for 2 hours at room 

temperature. Sections exposed to biotinylated secondary were again rinsed and reacted with 

avidin-biotin complex (Vector Elite Kit, Vector Laboratories, Inc., Burlingame, CA; 1:200) at 

room temperature for an additional hour. After washing, the tissue sections were stained by 

exposing them to a substrate composed of a 3,3' diaminobenzidine tetrahydrochloride (DAB; 

Sigma) and H2O2 dissolved in 0.1 M sodium acetate. After staining for 10-18 minutes, the 

reaction was terminated by rinsing the slides in two successive rinses of 0.9% saline. 

Intensification of the staining color was achieved be adding nickel sulfate (Fisher Scientific, 

Pittsburgh, PA) and cobalt chloride (Sigma) to the DAB reaction step. Sections were 

counterstained with 0.5-1.0% neutral red (Fisher Scientific) and then dehydrated in graded 

alcohols, cleared in xylene and coverslipped with permount mounting media (Fisher Scientific) 

and analyzed and photographed with a light microscope (Axiophot, Carl Zeiss). Each run 

contained negative controls generated by the omission of the primary antiserum. Omission of 

the primary antisera resulted in no specific staining at any of the ages examined. The protocol 

followed for immunohistochemical detection of vimentin was previously reported by our 

laboratory [16]. 

Double label immunohistochemistry was a modification of that previously reported by 

our laboratory [27]. Briefly, sections were rinsed, exposed to normal rabbit serum as a 

blocking step, and then incubated in goat anti-cholera toxin B subunit primary antiserum at 
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1:5,000 (List Biological Laboratories) overnight at room temperature. Following primary 

antisera incubation, sections were exposed to fluorescein labeled rabbit anti-goat secondary 

antibodies (Vector, 1:50) for 2 hours. Sections were then blocked with normal horse serum, 

and incubated in mouse anti-vimentin primary antisera at 1:1000 (DAKO) overnight at room 

temperature. Sections were then exposed to horse anti-mouse secondary antibodies (Vector, 

1:200) for 2 hours. Following secondary antisera, sections were then incubated with Texas 

red Avidin D (Vector, 1:50) for 2 hours. After incubation, sections were incubated with 

biotinylated anti-avidin (Vector, 1:100) for 2 hours. Sections were then reincubated with 

Texas red Avidin D. Finally sections were rinsed and coverslipped in Vectrashield (Vector). 

Analysis of Immunohistochemical Tissue 

Sections were examined with a Zeiss Axiophot microscope and regions containing 

immunoreactivity were identified and recorded on maps of coronal sections of the opossum 

brain [14,16,21, 23]. Structures were identified by reference to an atlas of the developing rat 

brain [3,47,48]. Double label experiments were viewed for analysis on a fluorescent 

microscope (FXA, Nikon) with fluorescein and Texas Red filter cubes. 

Measurements of brainstem width, height, area, and changes in motoneuron position 

were made utilizing NIH Image software. Images were captured from a Nikon FXA with a 

Kodak Megaplus camera and imported into NIH Image running on a Apple Macintosh 

computer. Following calibration and image capture the NIH Image software calculated the 

measurements. Calculations were made from at lease three brainstem sections from three 

animals at each of the time points investigated. 

Digital Processed Figures 

Figure 5 was produced digitally on a Macintosh 660A V computer. To create this 

figure, 2X2 slides were digitized with a slide scanner (Nikon) and transferred to Adobe 

Photoshop v2.5. Images were then cropped to size and saved as eps files for labeling. Aldus 

Freehand v3.0 was utilized for labeling the figure and the final image was printed on an 
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Tetronics Phaser 480 dye sublimation 300 dots per inch color printer. 

Results 

General Observations 

Injections of CtB into the right cheek / lip region retrogradely labeled at all ages facial 

motoneurons localized to the right side of the brainstems (ipsilateral to the injection). 

Hypoglossal motoneurons were retrogradely labeled bilaterally at all ages following a CtB 

injection into the tongue. Immunoreactive elements were observed filling the cell bodies and 

processes of the motoneurons, but not within the cell nucleus. With increasing survival time, 

CtB-like immunoreactivity (CtB-IR) was also observed within cells and terminals of the 

trigeminal sensory nucleus due to increased survival time allowing for anterograde transport. 

No other cells were observed labeled with CtB-IR. A description of the development of the 

facial and hypoglossal motor nuclei in the neonatal Brazilian opossum brain are as follows: 

Facial Motor Nucleus 

Following a two hour survival period, at 1 PN, CtB labeled facial motoneurons were 

observed with the majority located near the dorsal midline of the medulla (Fig. 3.1A,B). 

Additional labeled motoneuron cell bodies were observed in the region of the abducens cranial 

nucleus and distal to the developing facial nerve genu in a more lateral position. At higher 

magnification, facial motoneurons retrogradely labeled with CtB-IR (Fig. 3.2A) were observed 

to have leading processes extending from the motoneuron soma in a ventral and lateral direction 

(toward the presumptive future location of the FMN). At 1 PN, no motoneuron cell bodies 

were observed at the adult location of the FMN. 

At 3 PN, following a forty-eight hour survival period, some of the facial motoneurons 

retrogradely labeled with CtB-IR had reached the region of the developing FMN (Fig. 

3.1C,D). A majority of facial motoneurons were observed in between the dorsal portion of the 

brainstem and the location of the adult FMN. Motoneurons that had not yet reached the adult 

FMN, were observed to have leading processes (Fig. 3.2B). At higher magnification, these 
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Figure 3.1. A series of photomicrographs from rostral to caudal for each age, 

exhibiting CtB-like immunoreactivity in facial motoneurons in the 

developing opossum brainstem. At 1 PN (A & B), CtB retrograde labeled 

motoneurons were localized near the developing genu (asterisk). 

Motoneuron cell bodies were observed in the region of the developing 

facial nerve genu extending in a ventral and lateral direction. Virtually, no 

motoneuron cell bodies were observed at the adult location of the FMN (7). 

At 3 PN (C & D), some CtB labeled facial motoneurons were localized in 

the adult FMN. However, the majority of facial motoneurons were 

observed in between the developing genu and the FMN. By 5 PN (E & 

F), the majority of facial motoneurons have reached their destination in the 

FMN. Some of the CtB immunoreactive motoneurons were still observed 

between the genu and the FMN. By 7 PN (G & H), most of the facial 

motoneurons were localized to the FMN having finished migration to their 

destination. By 10 PN (I & J), all of the facial motoneurons were localized 

to the PMN, having finished migration to their destination. Note that the 

cartilage (white c) of the developing skull is dark due to counterstaining of 

the tissue and does not represent specific immunoreactivity. Abbreviations: 

4V, fourth ventricle; *, developing facial nerve genu; c, cartilage. Scale 

bars = 100 p.m. 
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Figure 3.2. High power photomicrographs of CtB labeled sections at 1 PN (A), 3 PN (B), 5 PN (C), and 7 PN (D), 

showing the morphology of CtB-like immunoreactive facial motoneurons. Facial motoneurons displayed a 

bipolar shape with leading processes (filled arrowhead) and trailing processes (open arrowhead) indicating 

that the cell bodies are in the process of migrating to their destination. The FMN is in the direction to the 

lower right comer with the fourth ventricle to the top, midline to the left, lateral border to the right, and 

ventral border to the bottom. Scale bars = 20 |i.m. 
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motoneuron processes labeled with CtB-IR were projecting in a ventral and lateral direction 

towards the location of the FMN (Fig. 3.2B). 

By 5 PN, the majority of the facial motoneurons retrogradely labeled with CtB-IR had 

reached their destination within the FMN, following a forty-eight hour survival period (Fig. 

3.1E,F). Some of the CtB-IR motoneurons were still observed in between the dorsal medulla 

and the adult location of the FMN. The few remaining facial motoneurons outside the location 

of the adult FMN were observed to have leading processes projecting in a ventral and lateral 

direction toward the FMN (Fig. 3.2C). In addition, the developing facial nerve was observed 

projecting in a dorsal and medial direction which is a similar pattern to the adult facial nerve 

projection. 

At 7 PN, following a forty-eight hour survival period, almost all of the CtB-IR 

motoneurons were observed in the FMN with a few observed outside the FMN (Fig. 3.1G,H). 

Higher magnification examination demonstrated that a few motoneurons still outside the FMN 

had leading processes projecting towards the FMN (Fig. 3.2D). The developing facial nerve 

was observed projecting dorsal and medial toward the genu of the facial nerve. At 10 PN, 

following a forty-eight hour survival period, essentially all of the facial motoneurons were 

located within the FMN (Fig. 3. II,J). The developing facial nerve follows a dorsal and medial 

pathway towards the facial nerve genu characteristic of the adult facial nerve. 

Hypoglossal Motor Nucleus 

At I PN, hypoglossal motoneurons exhibited CtB-ER labeling following injection into 

the tongue (Fig. 3.3A). The labeled hypoglossal cell bodies were found within the HMN. The 

developing hypoglossal nerve, consisting of projections from hypoglossal motoneurons, was 

observed projecting in a ventral and lateral direction typical for the hypoglossal nerve. 

Hypoglossal motoneurons were retrogradely labeled with CtB-IR at 3 PN (Fig. 3.3B). 

As seen in 1 PN animals, the hypoglossal motoneurons were localized within the HMN. 
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Figure 3.3. A series of photomicrographs, displaying CtB-like immunoreactivity in 

hypoglossal motoneurons at 1 PN (A) and 3 PN (B). At both 1 and 3 PN, 

CtB retrogradely labeled hypoglossal motoneurons are located in the 

HMN. Abbreviations: 4V, fourth ventricle. Scale bars = 50 |im. 
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Again the developing hypoglossal nerve, (projections from hypoglossal motoneurons) was 

observed projecting in a ventral and lateral direction characteristic of the adult hypoglossal 

nerve. Migration of hypoglossal motoneurons was not observed at any age examined. 

Vimentin-like and CtB-like immimoreactivity 

Vimentin-like immunoreactivity (VIM-ER) was observed in radial processes evenly 

spaced extending the height of the brainstem from the dorsal ventricular zone to the ventral pial 

surface (Fig. 3.4B J)). The dorsal aspect, near the neuroepithelium, was medial as compared 

to the location of the fibers on the ventral surface. Thus it appears that the position of the radial 

glial fibers were oriented in a dorsal to ventral direction with a medial to lateral slant. 

As shown above, retrogradely labeled CtB-ER facial motoneurons were mainly seen 

near the facial nerve genu at 1 PN with a few motoneurons migrating toward the adult location 

of the FMN (Fig. 3.4A). Migrating facial motoneurons appear to be grouped with even 

spacing as seen for the VIM-IR radial glial fibers. At 1 PN, VIM-IR radial glial fibers were 

oriented in a similar direction as migrating facial motoneurons (Fig. 3.4B). In addition, as 

observed at 1 PN, die 5 PN facial motoneurons retrogradely labeled with CtB-IR were seen 

migrating in columns (Fig. 3.4C) that appear to be oriented in a similar direction as the VIM-IR 

radial glial fibers (Fig. 3.4D). 

Double label studies, as observed at 3 PN, demonstrate columns of migrating CtB-IR 

facial motoneurons (FTTC) are in close association with VIM-IR radial glial fibers (Texas Red) 

that are in between the dorsal brainstem and the adult FMN (Fig. 3.5A). Higher magnification 

photomicrographs demonstrate the apparent contacts between columns of CtB-IR facial 

motoneurons and their leading processes with the VIM-IR radial glial fibers (Fig. 3.5B). Both 

columns and leading processes of CtB-IR labeled facial motoneurons were observed in close 

proximity to VIM-ER. labeled radial glial fibers. 
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Figure 3.4. Photomicrographs exhibiting CtB-like immunoreactivity at 1 PN (A) and 5 PN (C) and vimentin-like 

immunoreactivity at 1 PN (B) and 5 PN (D). Vimentin-like immunoreactive radial glial cells were oriented in the 

same direction (parallel arrows) as the columns of CtB-like immunoreactive facial motoneurons. Note that the 

cartilage (white c) of the developing skull is dark due to counterstaining of the tissue and does not represent 

specific immunoreactivity. Abbreviations: 4V, fourth ventricle. Scale bars = 100 |im. 
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Figure 3.5. Photomicrographs demonstrating double label immunohistochemistry for 

CtB-IR facial motoneurons (FTTC; green) and VM-IR radial glial cells 

(Texas Red; red) in the 3 FN developing Opossum brain. Lower 

magnification photomicrographs demonstrate the VIM-IR radial glial fibers 

spanning the brainstem in a dorsal-ventral pattern (A). Also, the CtB-ER 

facial motoneurons were observed in and migrating to the FMN. In higher 

magnification photomicrographs columns of CtB-IR labeled facial 

motoneurons (arrow) were observed in close proximity of VTM-IR radial 

glial fibers (B). Scale bars = 100 p.m in A and 50 jim in B. 
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Discussion 

In the present study we have examined the development of the facial and hypoglossal 

motor nuclei in the neonatal Brazilian opossum brain. We have utilized postnatal injections of 

CtB and immunohistochemical detection of CtB for retrogradely tracing the innervation from 

the facial and hypoglossal motoneurons. 

Retrogradely labeled facial motoneurons were localized near the developing abducens 

nucleus at 1 PN, within and in between the FMN and the dorsal midline of the brainstem at 3, 

almost all within the FMN by 5 and 7 PN, and all within the FMN at 10 PN. This protracted 

postnatal period of migration for the FMN differs greatly from the HMN. Retrogradely labeled 

hypoglossal motoneurons were observed within the HMN at all ages examined. This change 

in position of facial motoneurons suggests they migrate through the brainstem. Our usage of 

the word migration is an implied sense since we did not actually observe facial motoneurons 

moving. 

During their migration facial motoneuron appearance was similar to other previously 

described migrating neurons. Rakic [32, 55, 56] previously described the appearance of 

migrating neurons along radial glial fibers. In this smdy, facial motoneurons were observed to 

have a leading process during their migration projecting toward the FMN and also a trailing 

process which in this situation would the efferent axon from a facial motoneuron. 

Migration of facial motoneurons has been well characterized in the embryonic rat [2,5]. 

Following neurogenesis from the midline neuroepithelium, the growth of efferent axons 

precedes the perikaryal migration through the brainstem. Perikaryal migration of facial 

motoneurons takes an initial course directed at a right angle away from their efferent axons. 

This complex pattern of migration differs dramatically from and is best contrasted with 

trigeminal motoneurons migrating to their motor nucleus. Following neurogenesis, trigeminal 

motoneurons undergo perikaryal migration to the motor nucleus first and then the growth of 

efferent axons follows. Hypoglossal motoneurons have a limited migration after neurogenesis 
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from the neuroepithelium along the fourth ventricle to the adjacent location of the HMN. 

Hypoglossal motoneurons migrate to the region of the HMN prior to the growth of efferent 

projections. 

Using retrograde tract tracing of facial motoneurons in the mouse, Ashwell and Watson 

[7] demonstrated that facial motoneurons are connected to their target muscles by embryonic 

day 17. In the neonatal rat, studies indicate that the facial motoneurons innervate their 

respective target muscles within the first five days following birth (1 PN, unpublished 

observations; 5 PN, [65, 81]). Thus, the expected time course for facial motoneurons to 

contact their respective target skeletal muscles in the rat would be embryonic, similar to the 

mouse. To date this study has not been specifically investigated. 

Although this study did not investigate motoneuron birthdating, neurogenesis of the 

brainstem cranial motor nuclei appears to be a prenatal event in the Brazilian opossum 

(Jacobson Laboratory, unpublished observations). The time course for neurogenesis of the 

facial and hypoglossal motoneurons is not known for the Brazilian opossum but has been 

investigated in detail in the prenatal rat (reviewed in [4]). The rat FMN has a neurogenic 

gradient with the rostral neurons being "older" and the caudal neurons being "younger." Facial 

motoneurons are generated on embryonic days 12 through 14 (E12-E14) while hypoglossal 

motoneurons are generated on EI 1 and El2. The HMN does not have a rostral to caudal 

gradient as observed for the FMN, however, neurogenesis of the hypoglossal motoneurons is 

completed slightly earlier than that for the facial motoneurons. 

A comparison of the development of the facial motor system between the Brazilian 

opossum and the embryonic rat produces both similarities and differences. Altman and Bayer 

[2] observed facial motoneuron neurogenesis on El 3, growth of efferent axons on El4, and 

perikaryal migration on days E15-E17. Neurogenesis of facial motoneurons in the opossum 

would be predicted to occur before birth as in the rat. Retrogradely labeling facial motoneurons 

with CtB at 1 PN demonstrated that the facial nerve courses laterally, exiting the brainstem 
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(J J. Swanson, unpublished observations). Altman and Bayer [2] observe facial motoneuron 

migration on E15 through E17 which would correlate with 1 PN though 3 PN in the opossum 

if there is a direct day-to-day correlation. We did observe the majority of facial motoneurons 

were migrating on I PN, not ending on 3 PN but rather around 5 PN, when most facial 

motoneurons were at their destination. 

The relative distance of migration of facial motoneurons is characterized in Table 3.1. 

With increasing postnatal age the distance from the midline increases from 200 jim at 1 PN to 

480 p,m at 7 PN. In addition, with increasing postnatal age the distance from the 4th ventricle 

increases from 110 |xm at 1 PN to 560 fim at 7 PN. These increasing distances from the 

midline and 4di ventricle are summarized in a graph (Fig. 3.6) demonstrating the migration of 

facial motoneurons. 

To determine if facial motoneuron movement is due to migration or brainstem 

expansion the relative rates were calculated (Table 3.2). During postnatal days 1 through 7 

facial motoneurons move away from the fourth ventricle at an average rate of 87.5 |im. During 

the same time period the brainstem expands in height at an average rate of 65.0 ^m. However, 

facial motoneurons move away from the midline at a rate of 48.7 |im while the brainstem 

expands in width at a rate of 94.3 ^im. Since the expansion in width is twice the distance from 

the midline the adjusted expansion would be at a rate of 47.2 ^im which is very similar to the 

rate of facial motoneuron movement. From these data we conclude that the facial motoneurons 

do migrate due to their movement away from the fourth ventricle at a faster rate than brainstem 

height expansion. However, the horizontal movement of facial motoneurons is at a similar rate 

of brainstem width expansion so their migration in this direction is unknown. Further 

statistical analysis will be performed to determine the significance of these changes in distance 

and rates. 

Due to the complex arch of their efferent projections and migration pathway, facial 

motoneurons were thought to migrate to their destination without the aid of radial glial cells [5]. 



www.manaraa.com

Table 3.1. Average width, height, and area for developing brainstems with relative distance 

from midline and 4th ventricle for migrating facial motoneurons (in )im). 

Age Average Average distance Average Average distance Average agea 

(postnatal days) width (}im) from midline (|im) height (|xm) from 4th ventricle (^m2) 

(^m) 

1 PN 1160 200 440 110 550,000 

3 PN 1360 310 580 290 870,000 

5 P N  1520 380 700 500 1,400,000 

7 PN 1720 480 860 560 1,590.000 
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Figure 3.6. Graph of CtB labeled facial motoneuron location during migration. With increasing age the distance between 

facial motoneurons and the midline or 4th ventricle increases. These results demonstrate the migration of facial 

motoneurons away from their origin of neurogenesis. 
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Table 3.2. Rate of facial motoneuron migration and rate of brainstem expansion (in |im/day). 

Time Period Rate of facial Rate of brainstem Rate of facial Rate of brainstem 

(postnatal days. motoneuron migration expansion in width motoneuron migration expansion in height 

PN) from 4V (|im/day) (|im/day) from midline (^m/day) [1/2] (nm/day) 

1-3 PN 90.0 60.0 55.0 100.0 

[50.0] 

1-5 PN 97.5 65.0 45.0 90.0 

[45.0] 

1-7 PN 75.0 70.0 46.0 93.0 

[46.5] 

Mean 87.5 65.0 48.7 94.3 

[47.2] 

00 
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Our results do not agree with their hypothesis. In addition, a previous ultrastructural study by 

Ruhrig and Hummel [61] reported that the perikarya of areas of facial motoneurons were in 

contact with radial fibers during their migration in the developing bovine brain stem. In this 

study we utilized double label immunostaining with CtB-IR and VIM-IR to demonstrate that 

facial motoneurons are in close proximity to radial glial fibers during their migration as well. 

These results suggest that facial motoneurons utilize radial glial fibers during their migration to 

their destination. 

To examine facial and hypoglossal motoneuron projections, we have performed 

immunohistochemistry for choline acetyltransferase-like immunoreactivity (ChAT-IR) to 

examine the developing facial and hypoglossal nerves [71], Preliminary results demonstrate 

that from the day of birth, the facial and hypoglossal nerves are ChAT-immunoreactive. At 1 

PN, the facial nerve, labeled with ChAT-IR, was observed exiting the skull into the periphery, 

turning rostrally, and extending toward target muscles. In addition, utilizing synaptotagmin-

like immunoreactivity, we have localized presynaptic terminals in target muscles of facial 

motoneurons. These data suggest tiiat facial motoneurons innervate their target muscles from 

the day of birth. Thus facial motoneurons have innervated their target muscles during a period 

when their cell bodies are still migrating to their final destination within the FMN. 

The development of the facial motor system is apparentiy completed long before birth in 

placental mammals. However, at birth, the facial motor system of the Brazilian opossum is 

still partially incomplete, with the efferents projecting to the target muscles during a period 

when the cell bodies are migrating to their destination. During this period when cell bodies of 

facial motoneurons are migrating if functional they might be expected to lack "classical" 

innervation and, therefore, would possibly be regulated in some other way. The transient 

expression of cholecystokinin binding sites as reported by Kuehl-Kovarik and coworkers [34, 

36] might provide for an additional level of regulation during migration. 



www.manaraa.com

83 

Summary 

In conclusion, we have examined the development of the facial and hypoglossal motor 

nuclei in the Brazilian opossum brain utilizing the retrograde tracer cholera toxin subunit B. 

Facial motoneurons in newborn opossum pups (1 PN) exhibited CtB-IR and their cell bodies 

were localized near the dorsal midline of the medulla. At 3 PN, some CtB-IR labeled facial 

motoneurons were observed in the FMN with a majority observed between the facial nerve 

genu and the FMN. By 5 PN, the CtB-IR labeled facial motoneurons were observed mostly 

within the FMN with a few sill migrating. Between 7 and 10 PN, CtB-IR labeled facial 

motoneurons have reached their destination in the FMN as seen in the adult. In contrast, CtB-

IR labeled hypoglossal motoneurons were observed in the HMN from 1 PN. Double label 

studies demonstrated that facial motoneurons labeled with CtB-IR were in apparent contact 

with VIM-IR labeled radial glial fibers during their migration. These results suggest that the 

developmental history of the facial and hypoglossal motor nuclei is different. Further, the 

results presented here indicate that the FMN might be able to regulate motor activity prior to 

completing its own embryonic development. 
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CHAPTER FOUR. FACIAL AND HYPOGLOSSAL MOTONEURON 

PROJECTIONS EXTEND TO THEIR RESPECTIVE TARGET MUSCLES 

IN THE NEONATAL BRAZILIAN OPOSSUM 

A paper to be submitted for publication in Developmental Brain Research 

Jack J. Swanson, M. Cathleen Kuehl-Kovarik, and Carol D. Jacobson 

Abstract 

The anatomical distribution of facial and hypoglossal cranial nerves were examined in 

the neonatal Brazilian opossum {Monodelphis domestica). Efferent projections from facial and 

hypoglossal motoneurons were localized utilizing immunohistochemical detection of choline 

acetyltransferase, neurofilament, and synaptotagmin. Facial and hypoglossal motoneurons and 

nerves were choline acetyltransferase-like immunoreactive (ChAT-IR) on the day of birth (1 

PN). At 1 PN, the facial nerve, immunostained with ChAT, was observed exiting the skull, 

extending rostrally, and branching in its target muscles. In addition, the caudal auricular, 

temporal, zygomatic, buccal, and marginal mandibular branches of the facial nerve were 

observed utilizing immunohistochemistry for neurofilament in whole mount preparations. The 

hypoglossal nerve, labeled at 1 PN with ChAT-IR, was also observed in the periphery 

extending toward, entering into, and branching within the tongue. In whole mount 

preparations at 1 PN, the hypoglossal cranial nerve was observed exiting the skull, coursing 

through the periphery, and entering into the tongue. Further, at 1 PN, presynaptic terminals 
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were localized in target muscles innervated by either facial or hypoglossal motoneurons, using 

immunohistochemistry for synaptotagmin-like immunoreactivity. We have previously shown 

that facial motoneurons in the Brazilian opossum are actively migrating for the first postnatal 

week. However, data presented here suggest that facial and hypoglossal motoneurons have 

contacted, and may innervate their target muscles from the day of birth; a time during which 

facial motoneurons are still migrating. 

Introduction 

The oromotor system consists of the trigeminal (5), facial (7), and hypoglossal (12) 

motor nuclei and their associated cranial nerves [85]. Facial motoneuron projections innervate 

the muscles of facial expression, specifically the muscles of the ear, eyelids, nose, cheeks, 

lips, and the caudal digastricus [7]. Hypoglossal motoneuron projections innervate the 

intrinsic musculature of the tongue. The motoneuron component of the Uigeminal cranial nerve 

innervates the muscles utilized in mastication. 

Cell bodies of facial motoneurons are located within the facial motor nucleus (FMN) 

found in the ventral-rostral medulla. Previous studies have demonstrated that the FMN of 

mammals consists of discrete subnuclei with an orderly topographical representation of facial 

nerves and musculature within the P^MN of the adult cat [11, 53], dog [53, 89], guinea pig 

[53], monkey [93], mouse [2], opossum (Brush-tailed [66], and North American [14]) and rat 

[30,41,46,48, 53, 73, 92]. In general, those studies reported that, the caudal (auricular) 

musculature is innervated by the motoneurons in the medial aspects of the FMN, the dorsal 

(ocular) musculature is innervated by motoneurons in the dorsal aspects of the FMN, ventral 

musculature is innervated by motoneurons in the ventral aspects of the FMN, and rostral 

(nasal) musculature is innervated by motoneurons in the lateral aspects of the FMN. In 

addition, facial nerve development has been documented in eutherian mammals [3,4, 25, 56, 

57, 69]. Such studies of cranial nerve development in placental mammals required the use of 

in utero procedures [3,4] or cesarean section fixation at critical time points [25,56, 57, 69]. 
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Studies in neonatal rats reported similar results for FMN innervation patterns as seen in adult 

rats [39]. These studies suggest that the development of FMN efferent projections must be 

prenatal in rats. 

A topographical organization also exists for the adult hypoglossal nucleus and has been 

described in the dog [9, 87], monkey [75, 88], rabbit [87], and rat [1, 42, 87]. These studies 

have demonstrated that motoneurons in the dorsal aspects innervate the tongue retrusor muscles 

and that motoneurons in the ventral aspects innervate the tongue protrusor muscles. The 

development of the hypoglossal cranial nerve has not been described as in depth regarding its 

topographical organization. Holt [31] examined the tongue musculature for 

acetylcholinesterase activity and reported its presence at embryonic day 14 (El4) in the rat at 

the light and electron microscopic level. Wragg and coworkers [95] localized the hypoglossal 

nerve within the tongue musculature at E14 in the rat, and by E15 tongue musculature 

responded to electrophysiological stimuli. 

All of these studies examining the development of the facial and hypoglossal cranial 

nerves utilized placental mammals. Because it appears that motoneuron efferent and projection 

growth is prenatal, examination of the developing cranial nerve motor systems in placental 

mammals necessitates the use of in utero procedures [3,4]. Marsupials are a useful tool that 

present an attractive alternative to study neuroembryological events. Marsupial young are bom 

in an extremely immature state which might be considered almost an embryonic condition when 

compared to eutherian young. Marsupial neonates have a protracted period of neurogenesis 

that continues into the postnatal period [33, 37,44, 79]. Yet at birth, these developing 

neonates must already possess functional systems for suckling and respiration. To take 

advantage of this developmental tool, our laboratory utilizes Monodelphis domestica, the 

Brazilian gray short-tailed opossum. Monodelphis is a small pouchless marsupial that breeds 

well under laboratory conditions. The absence of a pouch makes the young very accessible to 

manipulations for in vivo, "ex utero" developmental studies. Our laboratory has previously 
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described the ontogeny of several neurochemical systems in Monodelphis [19-21, 23, 24, 33-

36,43,58]. In addition, several other laboratories are utilizing Monodelphis to study 

development of CNS regions including: olfactory bulbs [6,65], visual system [27, 67, 68, 77, 

84,94], cerebral cortex [70], hypothalamus [67,72], brainstem [91], cerebellum [15], and 

spinal cord [8, 50, 52, 76, 86]. 

Our laboratory has previously established that facial motoneurons migrate postnatally 

[80,82]. Therefore, we wanted to determine if efferent development was also a postnatal 

event. Through the use of markers for axonal processes and presynaptic terminals, this study 

examined the efferent projections from facial and hypoglossal motoneurons. To accomplish 

this task three immunohistochemical markers were used: choline acetyltransferase, 

neurofilament, and synaptotagmin. Choline acetyltransferase is the enzyme that produces 

acetylcholine (ACh) from acetyl Co-A and choline. The neurotransmitter at neuromuscular 

junctions is ACh, thus choline acetyltransferase would be expected in motoneurons. Previous 

reports labeling motoneurons during development have successfully utilized ChAT 

immunohistochemistry [5, 10, 16-18, 32, 60-64]. Immunoreactivity for ChAT has been 

observed in cell bodies of sensory neurons, however, ChAT immunoreactivity has been only 

in the fibers fi-om motoneurons. Neurofilaments play a role in maintaining cytoskeleton 

integrity [38]. Immunohistochemistry for neurofilament allows for visualization of axonal 

outgrowth [28]. Visualization of the peripheral nervous system is possible utilizing whole 

mount immunohistochemistry. Without utilizing whole mount immunohistochemistry, studies 

require three-dimensional reconstruction of serial sections for visualization of neurite processes 

and peripheral nerves. Synaptotagmin has been localized within synaptic vesicle membranes 

and is thought to be needed in the secretory process [78,90]. Thus synaptotagmin, as a 

marker of synapse existence, was used to localize presynaptic neuromuscular junctions. 

Preliminary results of this study have been previously reported in abstract form[83]. 



www.manaraa.com

98 

Materials and Methods 

Animals 

Developing Brazilian gray short-tailed opossums were obtained from a colony at Iowa 

State University. Animals used to start and maintain the breeding colony were obtained from 

the Southwest Foundation for Research and Education (San Antonio, TX). Opossums were 

individually housed in plastic cages, maintained at a constant temperature (26°C) with a 14:10 

light-dark cycle, with food and water available ad libitum (Ferret Growth Chow, Ralston 

Purina, Inc. Indianapolis, IN) [44]. The animals and procedures used were in accordance with 

the guidelines and approval of the Iowa State University Committee on Animal Care. To 

obtain pups, male and female animals were paired for breeding for 14 days and then separated. 

Females were then checked daily at 15(X) hours for the presence of pups (day of birth = day 1 

of postnatal life; 1 PN). After a gestational period of 14 days [22,49] pups are bom in an 

extremely immature state, open their eyes around 30 PN, and are weaned at 60 PN [72]. At 

least three animals from a minimum of three different litters were used for the 

immunohistochemical studies. 

Tissue Preparation 

Heads were collected from 1 PN opossums. Animals were anesthetized by cooling in a 

-15°C freezer and then decapitated. Heads were placed in 4% paraformaldehyde for 48 hours 

at 4°C. After fixation, the heads were infiltrated with 30% sucrose for 24 hours at 4°C. Brains 

were cut into 20 mm thick coronal sections on a cryostat (Reichart-Jung 2800N). Sections 

were thaw mounted onto poly-L-lysine (Sigma) coated slides and stored at 4°C until processed 

for immunohistochemistry. 

Immunohistochemistry 

The protocol utilized for detection of choline acetyltransferase was a modification of the 

immunohistochemical protocol previously reported [19,21, 23, 24, 81] by our laboratory for 

the Brazilian opossum. Briefly, slide mounted sections were rinsed, incubated with a H2O2 
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solution to remove endogenous peroxidase activity, exposed to normal donkey serum as a 

blocking agent, and then incubated in goat anti-choline acetyltransferase primary antiserum at 

1:300 (AB144; Chemicon) for 20 hours at room temperature. After adequate washing, the 

tissue sections were incubated in biotinylated donkey anti-goat IgG (Jackson Laboratories; 

1:1000) for 2 hours at room temperature. Sections were again rinsed and reacted with avidin-

biotin complex (Vector Elite Kit; 1:2(X)) at room temperature for an additional hour. After 

washing, the tissue sections were stained by exposing them to a substrate composed of a 3,3' 

diaminobenzidine tetrahydrochloride (DAB; Sigma) and H2O2 in 0.1 M sodium acetate. The 

reaction of glucose oxidase (Sigma) with the addition of B-D-glucose (Sigma) and 0.1% 

NH4CI yielded the H2O2 for the DAB. After staining for 10-18 minutes, the reaction was 

terminated by rinsing the slides in two successive rinses of 0.9% saline. Intensification of the 

staining color was achieved be adding nickel sulfate (Fisher Scientific) and cobalt chloride 

(Sigma) to the DAB reaction step. Sections were counterstained with 0.5-1.0% neutral red 

(Fisher Scientific) and then dehydrated in graded alcohols, cleared in xylene and coverslipped 

with permount mounting media (Fisher Scientific) and analyzed and photographed with a light 

microscope (Axiophot, Carl Zeiss). Each run contained negative controls generated by the 

omission of the primary antiserum. Omission of the primary antisera resulted in no specific 

staining at any of the ages examined. The detection of synaptotagmin utilized a previously 

published protocol that we have successfully used in the Brazilian opossum [81]. 

Whole Mount Immunohistochemistry 

The protocol utilized for whole mount immunohistochemistry was a modification of 

that previously established for the Brazilian opossum ([47], J. M. Luque and J. G. Nicholls, 

personal communication). This protocol is similar to others previously reported [12, 29,40, 

71,74]. Briefly, heads were collected from 1 PN opossums. Animals were anesthetized by 

cooling in a -15°C freezer and then decapitated. Heads were dissected and placed in Dent's 

fixative (4 parts methanol, 1 part dimethyl sulfoxide [DMSO]) for 2 days. Following fixation 
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the heads were incubated in Dent's bleach (2 parts Dent's fixative and 1 part 30% hydrogen 

peroxide) for 3 days. Heads were dehydrated in absolute methanol twice for 30 minutes and 

then stored at -20°C overnight (or for extended storage). Following freezing (storage) the 

heads were thawed and washed in tris buffered saline (TBS, pH 7.6). Heads were incubated 

in primary antisera, mouse anti-neurofilament (2H3, 1:25), diluted in normal calf serum with 

20% DMSO overnight. The monoclonal neurofilament (165 kDa) antibody developed by T. 

M. Jessel and J. Dodd [13] was obtained from the Developmental Studies Hybridoma Bank 

maintained by The University of Iowa, Department of Biological Sciences, Iowa City, lA 

52242, under contract NOl-HD-7-3263 from the NICHD. After adequate washing (5 times 

for 1 hour in TBS), the heads were incubated in peroxidase-conjugated donkey anti-mouse IgG 

(Jackson Laboratories; 1:500) overnight. After washing, the heads were stained by exposing 

them to a substrate composed of a 3,3' diaminobenzidine tetrahydrochloride (DAB; Sigma) and 

H2O2 in 0.1 M sodium acetate. The reaction of glucose oxidase (Sigma) with the addition of 

B-D-glucose (Sigma) yielded the H2O2 for the DAB. Intensification of the staining color was 

achieved be adding nickel sulfate (Fisher Scientific) to the DAB reaction step. After staining 

for 10-18 minutes, the reaction was terminated by rinsing the slides in two successive rinses of 

methanol. Heads were then dehydrated in methanol and cleared in 1 part benzyl alcohol, 2 

parts benzyl benzoate solution (BABB). 

Analysis of Immunohistochemical Tissue 

Sections were examined with a Zeiss Axiophot microscope and regions containing 

immunoreactivity were identified by reference to an atlas of the developing rat brain and 

periphery [54, 55]. For whole mount analysis heads were observed and photographed with a 

dissecting microscope (SMZ-U, Nikon) in BABB solution. 

Digital Processed Figures 

Figure 2C was produced digitally on a Macintosh 660AV computer. To create this 

figure, drawings were digitized with a flatbed scanner (Hewlett Packard Scanjet 4c) and 
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transferred to Adobe Photoshop v2.5. Images were then cropped to size and saved as eps files 

for labeling. Aldus Freehand v3.0 was utilized for labeling the figure and the final image was 

printed on a laser printer (Hewlett Packard Laserjet 4MP). 

Results 

Projections from Facial Motoneurons 

Choline acetyltransferase-like immunoreactivity (ChAT-IR) labeled the facial nerve 

from the day of birth (1 PN; the earliest age we examined). The ChAT-IR was observed in 

efferent projections from facial motoneurons coursing laterally and exiting the rostral medulla 

(Fig. 4.1 A). In the periphery, the facial nerve was seen exiting the skull (Fig. 4. IB). After 

exiting the skull, the facial nerve was seen to curve ventrally before tuming and projecting 

rostrally (Fig. 4.1B-D). 

Whole mount immunohistochemistry for neurofilament improved visualization of the 

facial nerve in the periphery (Fig. 4.2). At 1 PN, the facial nerve labeled with neurofilament-

like immunoreactivity was observed exiting the skull, curving ventrally before tuming and 

projecting rostrally (Figs. 4.2A,B). Several branches of the facial nerve were observed at 1 

PN such as: posterior auricular, temporal, zygomatic, buccal, and marginal mandibular (Fig. 

4.2C). 

Synaptotagmin-like immunoreactivity was utilized for examination of presynaptic 

terminal formation of facial motoneuron projections within target muscles. At 1 PN, 

synaptotagmin-like immunoreactivity was observed in the posterior digastric (Fig. 4.3A) and 

platysma (Fig. 4.3B) muscles. 

Projections from Hypoglossal Motoneurons 

Hypoglossal motoneurons and the corresponding cranial nerve were both 

immunoreactive for choline acetyltransferase on the day of birth. In the periphery, at 1 PN, the 

hypoglossal nerve labeled with ChAT-IR was observed entering the tongue from the ventral 

aspects and extending in a dorsal and medial direction (Fig. 4.4A). In horizontal sections, the 
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Figure 4.1. A series of photomicrographs demonstrating choline acetyltransferase-like immunoreactivity in efferent projections 

from facial motoneurons at 1 PN. Immunoreactivity for choline acetyl transferase was observed in the facial nerve 

(arrows); exiting the brainstem (A; coronal section), in the periphery (B; sagittal section), turning rostrally (C; sagittal 

section), and projecting rostrally (D; sagittal section). Sagittal sections (B, C, & D) are sequential with a 40 |im 

distance inbetween them. Note that the cartilage of the developing skull is dark due to counterstaining of the tissue 

and does not represent specific immunoreactivity. Abbreviations; Aq, cerebral aqueduct; bo, basiocccipitai bone; cb, 

cerebellum; FL, forelimb; msg, submandibular salivary gland; sc, superior collucius; 4, fourth ventricle. Scale bars 

= 200 (xm. 
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Figure 4.2. Photomicrograph (A) of whole mount immunohistochemistry for neurofilament 

in a 1 FN opossum head. Higher magnification photomicrograph (B) 

demonstrating branches of the facial nerve at I PN. Neurofilament-Iike 

immunohistochemistry allows visalization of the branches of the facial nerve at 

I PN. Scale bars = 200 |im. Schematic diagram (B) of the facial nerve in the 

neonatal opossum head. Caudal auricular [PA], temporal [T], zygomatic [Z], 

buccal [Bu], and marginal mandibular [M], branches of the facial nerve can be 

seen in A at 1 PN demonstrating the efferent projection of facial motoneurons at 

this age. 
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Figure 4.3. A series of photomicrographs showing synaptotagmin-Iike immunoreactivity in 

facial motoneuron efferent projections within the target muscles: posterior 

digastricus (A) and platysma (B) at 1 PN, respectively. Synaptotagmin-Iike 

immunoreactivity was observed in the nerve branching into the muscle (open 

arrowhead) and in presumptive presynaptic terminals (closed arrowhead). 

Abbreviations: dig, posterior digastricus muscle; mh, mylohyoideus muscle; 

pma, platysma muscle; sk, skin. Scale bars = 50 |j.m. 
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Figure 4.4. A series of photomicrographs demonstrating choline acetyltransferase-like immunoreactivity in efferent projections 

from hypoglossal motoneurons at 1 PN. Immunoreactivity for choline acetyltransferase was observed in the 

hypoglossal nerve (arrows); branching (A; coronal section), entering (B; horizontal section), and projecting rostrally 

(C«&D; horizontal sections) in the tongue. Horizontal sections (B, C, & D) are sequential with 40 jim distance 

inbetween them. Note that the cartilage of the developing skull is dark due to counterstaining of the tissue and does 

not represent specific immunoreactivity. Abbreviations: gg, genioglossus muscle; m, mandible (Meckel's) cartilage; 

mh, mylohyoideus muscle; msg, submandibular salivary gland; sk, skin. Scale bars = 200 ^m. 
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hypoglossal nerve can be seen entering the tongue from the periphery (Fig. 4.4B), and 

extending rostrally through the tongue musculature (Fig. 4.4C JD). 

Utilizing whole mount immunohistochemistry for neurofilament one can visualize the 

hypoglossal nerve at 1 PN (Fig. 4.5). The hypoglossal nerve was observed exiting the 

brainstem, coursing through the periphery, and branching into the tongue musculature. 

Synaptotagmin-like immunoreactivity was observed in the tongue musculature at 1 PN 

(Fig. 4.6). The hypoglossal nerve labeled with synaptotagmin-like immunoreactivity was 

localized branching within the tongue musculature (Fig. 4.6A,B). Hypoglossal motoneuron 

projections contained synaptotagmin-like immunoreactivity and appeared to extend toward and 

form what appear to be presynaptic terminals onto tongue muscle fibers (Fig. 4.6C,D). 

Discussion 

In the present study we have localized the efferent projections from facial and 

hypoglossal motoneurons in the neonatal Brazilian opossum. Both the facial and hypoglossal 

nerves project into the periphery at birth. Further, efferent projections from facial and 

hypoglossal motoneurons were observed to project into the region of target muscles and 

presumptive developing neuromuscular junctions were observed upon target muscle fibers on 

the day of birth. 

The first component of this study was to examine the developing efferent projections 

from facial motoneurons that comprise part of the facial cranial nerve. Utilizing choline 

acetyltransferase-like immunoreactivity we observed projections from facial motoneurons: 

coursing dorsally toward the genu and then coursing laterally before exiting the rostral medulla, 

hi the periphery the facial nerve was observed exiting the skull and projecting in a rostral 

direction. Whole mount immunohistochemistry for neurofilament allowed for the visualization 

of the various branches of the facial nerve at 1 PN. Synaptotagmin-like immunoreactivity was 

observed within target muscles of the facial motoneurons, indicating that efferent innervation to 

these muscles might be present. 
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Figure 4.5. Photomicrographs exhibiting whole mount immunohistochemistry for 

neurofilament in the 1 PN opossum head. Neurofilament-like 

immunohistochemistry labels the hypoglossal nerve exiting the brainstem, in 

periphery, entering the tongue, and branching though the tongue. Scale bars 

200 tim. 
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Figure 4.6. A series of pliotomicrographs, from rostral to caudal (A-C), showing synaptotagmin-like immunoreactivity in 

hypoglossal motoneuron efferent projections within the tongue at 1 PN. Synaptotagmin-like immunoreactivity 

reveals the branching of the hypoglossal nerve (A&B) and the appearance of developing neuromuscular junctions 

upon muscle fibers (C&D). Note that the cartilage of the developing skull is dark due to counterstaining of the tissue 

and does not represent specific immunoreactivity. Abbreviations: gg, genioglossus muscle, gh, geniohyoidus 

muscle; m, mandibular (Meckel's) cartilage; mh, mylohyoideus muscle; np, nasopharynx; and sk, skin. Scale bars = 

200 fim in A, B, & C, and 50 ^m in D. 
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The second component for this study was to investigate the developing efferent 

projections from hypoglossal motoneurons that form the hypoglossal cranial nerve. 

Immunoreactivity for choline acetyltransferase was observed in the hypoglossal nerve at 1 PN. 

In the periphery the hypoglossal nerve coursed rostrally and medially before entering the 

tongue musculature and branching throughout this target muscle. Whole mount 

immunohistochemistry labeled the hypoglossal nerve in the periphery and after it had entered 

and branched within the tongue musculature. Synaptotagmin-like immunoreactivity was also 

present within the hypoglossal nerve and developing presumptive presynaptic terminals were 

observed upon muscle fibers. 

These results suggest that both the facial and hypoglossal motoneurons might innervate 

their respective target muscles on the day of birth (1 PN). The efferent projections were 

labeled with choline acetyltransferase-like inmiunoreactivity into the periphery. Whole mount 

immunohistochemistry was then utilized to label the developing facial and hypoglossal nerves 

within the peripheral musculature and skin. Finally, synaptotagmin-like immunoreactivity was 

utilized to look for developing neuromuscular junction terminals upon muscle fibers within 

respective target muscles. 

On the basis of previous studies, hypoglossal motoneurons were expected to innervate 

their target muscles by birth based upon the importance of the tongue in the suckling 

mechanisms [26, 51]. However, the idea that facial motoneurons innervate their respective 

target muscles from birth would not have been predicted. Recent studies in our laboratory, 

utilizing retrograde tract tracing with cholera toxin subunit B, have demonstrated that the 

migration of facial motoneurons and the development of the FMN is a postnatal event in the 

Brazilian opossum [80, 82]. At 1 PN, most facial motoneurons are observed near the 

developing abducens nucleus. At 3 PN, most facial motoneurons are migrating toward the 

FMN, and not until 7 PN are almost all facial motoneurons within the FMN. When these 

previous results are combined with current results presented in this paper it appears that facial 
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motoneurons are in contact with their target muscles during a time when their cell bodies are 

migrating to their destination in the facial motor nucleus. This circumstance raises an 

interesting question - are facial motoneurons functional while migrating? This question is 

interesting because facial musculature may play a role in suckling behavior. 

In addition, studies in our laboratory have focused upon the development of synapses 

within the IMN in Brazilian opossum neonates. Previously at the light microscopic level we 

have reported an apparent delayed synaptogenesis within the FMN as compared to that for the 

hypoglossal motor nucleus (HMN)[81]. Utilizing synaptic terminal-associated markers, we 

reported that the FMN does not appear to receive afferent innervation until 15 PN, and further, 

mature synapses are formed between 15 and 25 PN. This delayed synaptogenesis was 

compared to the HMN which appears to receive afferent innervation from birth. Recently 

ultrastmcture studies of the developing FMN and HMN confirm ongoing synaptogenesis 

within the FMN but also within the HMN with increasing age [59]. These results again raise 

the question - are facial motoneurons functional before afferent innervation and if so how are 

they regulated? We have begun to look for potential regulators and already found that 

motoneurons in the FMN of the Brazilian opossum transiendy express cholecystokinin (CCK) 

binding sites during this neonatal period [43,45], although CCK fibers are not detected [23]. 

We suggest that die activity of facial motoneurons is regulated in a novel or distinct manner 

compared to hypoglossal motoneurons during this period of brain development. 

Summary 

In conclusion, immunoreactivity for choline acetyltransferase labels die facial and 

hypoglossal nerves in the periphery at 1 PN. Whole mount immunohistochemistry for 

neurofilament demonstrated the developing facial and hypoglossal cranial nerves coursing 

through the periphery. Synaptotagmin-like immunoreactivity demonstrates the branching of 

the facial and hypoglossal nerves within their target muscles and the appearance of developing 
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neuromuscular junctions upon muscle fibers. Taken together these results suggest that both 

facial and hypoglossal motoneurons have contacted their target muscles from the day of birth 

during a time when facial motoneurons are still migrating. 
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CHAPTER FIVE. GENERAL CONCLUSION 

Summary 

The first study, described in chapter two, exaniined the characterization and ontogeny 

of synapse-associated proteins in the developing facial and hypoglossal motor nuclei in the 

neonatal Brazilian opossum brain. This study utilized localization of markers associated with 

synapses to examine their appearance at the light microscopic level. The synapse-associated 

proteins utilized for immunohistochemistry in this study were: synaptic vesicle-associated 

proteins, synaptophysin and synaptotagmin; a synaptic membrane protein, plasma membrane-

associated protein of 25 kDa (SNAP-25); a growth cone protein, growth-associated 

phosphoprotein-43 (GAP-43); and microtubule-associated proteins, axonal marker Tau and 

dendritic marker microtubule-associated protein-2 (MAP-2). Results from this study 

demonstrated that during the first ten postnatal days (l-IO PN), the FMN lacked 

immunoreactivity for synaptophysin, synaptotagmin, GAP-43, Tau, and SNAP-25. After 10 

PN, immunoreactivity increased in the FMN for synaptophysin, synaptotagmin, GAP-43, and 

Tau, whereas immunoreactivity for SNAP-25 was not evident until between 15 and 25 PN. 

Conversely, immunoreactivity for MAP-2 was present in the FMN from 5 PN onward. In 

contrast to the FMN, the HMN displayed immunoreactivity from 1 PN for synaptophysin, 

synaptotagmin, SNAP-25, GAP-43, Tau, and MAP-2. These results suggest that the FMN of 

the Brazilian opossum may not receive afferent innervation as defined by classical synaptic 

markers until 15 PN, and further, that characteristic mature synapses are not present until 

between 15 and 25 PN. These results indicate that there may be a delay in synaptogenesis in 

the FMN as compared to synaptogenetic events in the HMN. 

The morphological development of the facial and hypoglossal motor nuclei in the 

neonatal Brazilian opossum brain was discussed in chapter three. In this study, we utilized 

retrograde tract tracing through the posmatal injection of cholera toxin subunit B (CtB) to 

characterize the formation of the facial and hypoglossal motor nuclei in the developing neonatal 



www.manaraa.com

129 

opossum brainstem. Injections of CtB were made into the cheek / lip region or tongue of 

opossum pups to retrogradely label the facial or hypoglossal motor nuclei, respectively. Facial 

motoneurons in newborn opossum pups (1 PN) exhibited CtB labeling following a two hour 

survival time, with their cell bodies essentially localized near the developing cranial abducens 

nucleus. At 3 and 5 PN, following a forty-eight hour survival time, CtB labeled facial 

motoneurons were observed in and migrating to the region of the adult facial motor nucleus in 

the rostral medulla. Between 7 and 10 PN, almost all facial motoneurons had migrated to their 

destination within the facial motor nucleus. Hypoglossal motoneurons also exhibited CtB 

labeling from 1 PN, however, their cell bodies were localized within the hypoglossal motor 

nucleus at the earliest age examined. Double label studies, to examine guidance of facial 

motoneurons during migration, demonstrated that CtB labeled facial motoneurons are in close 

proximity to vimentin-like immunostained radial glial fibers during migration. These results 

suggest: 1) the migration of facial motoneurons to the facial motor nucleus is a postnatal event, 

2) that efferent projections from facial and hypoglossal motoneurons project into the peripheral 

region of their target muscles from the day of birth, and 3) facial motoneurons migrate to their 

destination in the brainstem thereafter, in close association with radial glial fibers. 

The third study, presented in chapter four, examined the efferent projections of facial 

and hjrpoglossal motoneuron projections in the neonatal Brazilian opossum. To localize the 

efferent projections from facial and hypoglossal motoneurons we utilized immunohistochemical 

detection of choline acetyltransferase, neurofilament, and synaptotagmin. Facial and 

hypoglossal motoneurons and nerves demonstrated choline acetyltransferase-like 

immunoreactivity (ChAT-IR) from the day of birth (1 PN). At 1 PN, the facial nerve, labeled 

with ChAT, was observed exiting the skull, extending rostrally, and branching in its target 

muscles. In addition, the caudal auricular, temporal, zygomatic, buccal, and marginal 

mandibular branches of the facial nerve were observed utilizing immunohistochemistry for 

neurofilament in whole mount preparations. The hypoglossal nerve, labeled at 1 PN with 
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ChAT-IR, was also observed in the periphery extending toward, entering into, and branching 

within the tongue. In whole mount preparations at 1 PN, the hypoglossal cranial nerve was 

again observed exiting the skull, coursing through the periphery, and entering into the tongue. 

Further, at 1 PN, presynaptic terminals were localized in target muscles innervated by either 

facial or hypoglossal motoneurons, using immunohistochemistry for synaptotagmin-like 

immunoreactivity. Facial motoneurons in the Brazilian opossum are actively migrating for the 

first postnatal week. However, these data suggest that facial and hypoglossal motoneurons 

have contacted, and may innervate their target muscles from the day of birth, a time during 

which facial motoneurons are still migrating. 

Conclusions 

Various components of facial and hypoglossal motor systems development were 

examined in the neonatal Brazilian opossum brain in these studies. Specifically, we examined 

the time course of afferent innervation, migration and nuclear development, and establishment 

of efferent innervation. From these studies we have obtained results that can be expounded in 

the following areas: 

Afferent Innervation to the FMN and HMN 

Afferent innervation to the FMN has been investigated in the adult rat and North 

American opossum (Dom et al., 1973; Travers, 1995; Travers and Norgren, 1983). In 

addition, afferent innervation to the HMN has been reported in the adult rat (Borke et al., 

1983). The ontogeny of afferent innervation to either the FMN or HMN has not been 

previously examined in any species. However, in the rat, the peptidergic and aminergic 

innervation to the FMN was reported to increase during the first week of postnatal life, with an 

established innervation pattern appearing by 10 PN (Senbaet al., 1985). The first study, 

presented in chapter two, examined the appearance of synapse-associated proteins in the 

neonatal Brazilian opossum FMN at the light microscopic level. Localization of synapse-

associated proteins were utilized to provide insight into the time course of afferent innervation 
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to the FMN and HMN. 

Results from this study suggest that there is a delay in the appearance of synapse-

associated markers in the FMN as compared to the HMN. Levels of immunostaining for 

synapse-associated proteins were lower in the PMN from birth until 10 PN and increased 

throughout the period investigated. Conversely, immunostaining for synapse-associated 

proteins were detected in the HMN from the day of birth. We interpret these results to indicate 

that afferent innervation to the FMN is delayed when compared to that for the HMN. Further, 

our findings indicate that the FMN, in contrast to the HMN, has decreased levels of synaptic or 

"classical" innervation during this period of postnatal brain morphogenesis. 

These results for the FMN are somewhat similar to peptidergic and aminergic 

innervation study by Senba and coworkers indicating that the neonatal rat FMN does not 

receive specific types of innervation until after 10 PN (Senba et al., 1985). Our study suggest 

that the FMN of neonatal Brazilian opossums does not receive afferent innervation until after 

10 to 15 PN as well (Swanson et al., 1996). More studies are needed in other species but from 

these two studies their results suggest that maybe delayed afferent innervation to the FMN 

might be a common trend among species. 

Additional studies in our laboratory have investigated synaptogenesis within the FMN 

and HMN of the Brazilian opossum at the ultrastructural level (Pepper et al., 1996). Results 

from this study indicate that synaptogenesis within the FMN is ongoing during the posmatal 

period with the number of synapses increasing 3.5 times between 5 and 25 PN. In addition, 

this study demonstrated that synaptogenesis within the HMN is also ongoing during the 

postnatal period. From this study we concluded that synaptogenesis is ongoing within both the 

FMN and HMN during the first two postnatal weeks in the Brazilian opossum neonate. 

To explain the discrepancy between the light microscopic study in chapter two and 

electron microscopic study we believe that the difference lies between the two techniques. The 

electron microscopic study examined the appearance of synapses at the anatomical / 
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ultrastructural level within the two nuclei. In contrast, the light microscopic study examined 

the appearance of immunohistocheniistry against synapse-associated proteins within the two 

nuclei. While the results of the electron microscopic study indicate the true development of 

synaptogenesis within the two nuclei, the results fi*om the light microscopic study might imply 

the development of functional synapses within the two nuclei. For example, current models 

for regulated vesicle fiision and exocytosis in eukaryotic cells include both synaptotagmin and 

SNAP-25 as integral components during synaptic vesicle exocytosis (Bark and Wilson, 1994; 

O'Connor et al., 1994). While the absence of inununoreactivity cannot exclude synapses from 

the FMN, two studies demonstrate that synapses devoid of immunoreactivity would have 

decreased function. Mutants with a deficiency for synaptotagmin are lacking excitation 

produced secretion at the synapse (Broadie et al., 1994; Geppert et al., 1994). Synapses are 

present in these mutants but only spontaneous activity exists at those synapses. 

Development of the FMN and HMN 

Development of the FMN and HMN was investigated in the study presented in chapter 

three. In placental mammals the migration and development of the FMN and HMN are prenatal 

events that occur in utero. In the Brazilian opossum the development of the HMN appears to 

be a prenatal event. On the day of birth (1 PN) the retrogradely labeled hypoglossal 

motoneurons were localized within the HMN. In contrast, results presented in the chapter 

three study demonstrate the postnatal FMN development and facial motoneuron migration. On 

the day of birth (1 PN) retrogradely labeled facial motoneurons were essentially localized near 

the developing abducens nucleus. At 3 and 5 PN, facial motoneurons were localized in-

between the abducens nucleus and the developing FMN. Between 7 and 10 PN almost all 

facial motoneurons have migrated to their destination within the FMN. This postnatal 

development of the FMN was not expected considering that facial motoneurons might be 

necessary for the function of facial musculature during this postnatal period. 
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Migration of facial motoneurons 

As mentioned, the migration of facial motoneurons appears to be a postnatal event in 

Brazilian opossum neonates. During the migration of facial motoneurons they have a 

characteristic bipolar shape with a leading and a trailing process. As previously described for 

other migrating neurons, the classical description of a migrating neuron or motoneuron is a 

bipolar shape with leading and trailing processes oriented in the direction of the migration 

(Levi-Montalcini, 1964). However, in this simation for facial motoneurons the trailing process 

is the efferent axon projecting to the respective target muscles. 

In addition to displaying the characteristics of a migrating neuroblast, our results 

indicate that additional factors indicate that facial motoneurons are migrating. The rate of facial 

motoneuron movement is different than the rate of brainstem expansion (see Table 3.2 ). From 

1 to 7 PN facial motoneuron displacement occurs at an average rate of 87.5 microns per day. 

During the same period the brainstem expands in height at an average rate of 65.0 microns per 

day. Thus, the facial motoneurons are traveling in the vertical direction around an average of 

20+ microns per day more than the brainstem is expanding. However, the movement of facial 

motoneurons in the horizontal direction away from the midline occurs at 48.7 microns per day 

while the brainstem is expanding in width at an average rate of 94.3 microns per day. Since 

the brainstem width expansion is twice the distance from the midline the adjusted expansion 

rate for one half of the brainstem would be 47.2 microns per day, which is very similar to the 

rate of facial motoneuron movement. From these data we conclude that facial motoneurons do 

migrate due to their faster movement in the vertical direction than brainstem height expansion. 

However, the question of facial motoneuron migration in the horizontal direction is 

unanswered since it is at a similar rate to the expansion of the brainstem in width. Further 

statistical analysis will be performed to determine the significance of these rates. 

Further, CtB retrogradely labeled facial motoneurons were localized in close proximity 

to vimentin-like immunostained radial glial fibers. Previous studies have demonstrated some 
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of the associations of radial glial fibers with migrating neuroblasts. It is believed that radial 

glial cells act as physical scaffolds and substrates along which neurons can migrate (reviewed 

in Rakic, 1988; Rakic, 1990; Rakic, 1991). These studies have observed close associations 

between migrating neuroblasts and radial glial cells in the developing cerebral cortex, 

cerebellum, and tectum (Goldowitz and Mullen, 1982; Rakic, 1971; Rakic, 1972; Vanselow et 

al., 1989). In chapter three we have identified close associations between retrogradely labeled 

facial motoneurons and immunostained radial glial cells. The radial glial fibers are aligned in a 

vertical orientation for guidance of facial motoneurons during their migration from their site of 

neurogenesis to their final location within the FMN. We believe that radial glial fibers may 

provide facial motoneurons support and guidance during their migration. 

These data confirm that facial motoneurons are migrating postnatally. The results 

demonstrate that facial motoneurons have the characteristic shape of migrating neuroblasts, 

their rate of movement is faster than the expansion of the brainstem, and they are in close 

association with radial glial fibers previously demonstrated to guide migrating neurons. 

Efferent Innervation from the FMN and HMN 

From the day of birth both facial and hypoglossal motoneurons appear to innervate their 

respective target muscles. The study presented in chapter four examined the anatomical 

distribution of facial and hypoglossal motoneuron projections on the day of birth. Innervation 

of the tongue musculature by the hypoglossal motoneurons would be expected considering 

their importance in the suckling mechanisms. Studies have reported that mammals utilize their 

tongue musculature in a pump-suck mechanism that requires tongue movements to create a 

vacuum for milk expulsion (German and Crompton, 1996;MuIler, 1968). However, 

innervation of the facial musculature by facial motoneurons from the day of birth was not as 

predictable. Most researchers consider the suckling mechanism to mainly utilize the tongue 

musculature, but our laboratory believes that the facial musculature is necessary for suckling 

behaviors in addition to the tongue musculature. Innervation of facial musculature by facial 
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motoneurons during this period suggests that those muscles are capable of contributing to 

oromotor function and could be involved in suckling behavior. 

General Conclusions 

The three studies presented in this dissertation illustrate an interesting developmental 

situation for facial motoneurons. From the third study we determined that facial motoneurons 

have efferent projections that extend into the periphery and to the respective target muscles at 

birth. This process of facial motoneurons innervating their target muscles occurs during a time 

when their cell bodies are migrating through the brainstem, as shown in study two. From the 

first study we know that the time course of synapse-associated protein appearance is delayed in 

the FMN as compared to the HMN. This apparent delay of afferent innervation to the FMN 

during the first five days can be explained because the facial motoneurons are not there. 

However, from 5 to 10 PN, when most of the facial motoneurons are located within the FMN, 

afferent innervation appears to be absent. 

From this scenario of FMN development in the Brazilian opossum during the first two 

postnatal weeks several questions arise. First, are the facial motoneurons functional during 

this time period ? The facial motoneurons are connected to their target muscles and are 

presumably capable of innervating these muscles. If facial motoneurons are capable of 

innervating their target muscles they would do so while their cell bodies are in the process of 

migrating. A motoneuron or neuron innervating their target during migration is an unheard-of 

occurrence during brain morphogenesis and central nervous system development. Second, if 

facial motoneurons innervate their target muscles during this time period, how would they be 

regulated ? The first study demonstrated that the appearance of synapse-associated proteins is 

delayed for the first ten to fifteen days. This question of facial motoneuron regulation could be 

applied to either during their migration to the FMN or after they are located within the FMN 

during this time period. Our laboratory believes that facial motoneuron regulation is not 

through "classical" afferent sources but rather through transientiy expressed receptors. 
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Studies by several laboratories demonstrate that facial motoneurons transiently express 

a number of compounds and receptors. During a similar time course to studies presented in 

this dissertation, facial motoneurons transiendy express: vasopressin binding sites in the 

embryonic and neonatal rat (Tribollet et al., 1991), cholecystokinin binding sites in the neonatal 

Brazilian opossum (Kuehl-Kovarik et al., 1993a), cholecystokinin binding sites in the 

embryonic and neonatal rat (Kuehl-Kovarik and Jacobson, 1996), estrogen receptors in the 

neonatal rat (Yokosuka and Hayashi, 1992), nerve growth factor (NGF) receptors in the 

embryonic and neonatal rat (Friedman et al., 1991; Yan and Johnson, 1988), and the enzyme 

adenosine deaminase (ADA) in the embryonic and neonatal rat (Senba et al., 1987). The 

significance of these receptors and compounds being expressed transiendy is unclear. These 

transiently expressed receptors could have a physiological role in facial motoneuron regulation 

during a period of decreased or absent afferent innervation. 

The role of transient binding sites is confusing. Binding sites for CCK were observed 

transiently in the neonatal Brazilian opossum (Kuehl-Kovarik et al., 1993a) and rat (Kuehl-

Kovarik and Jacobson, 1996) FMN and vasopressin binding sites were observed in the 

neonatal rat FMN (Tribollet et al., 1991). Yet studies from our laboratory have demonstrated 

that neither CCK nor AVP inmiunoreactive fibers are found in this brainstem region (Fox et 

al., 1990; Iqbal and Jacobson, 1995a). This circumstance of binding sites without appropriate 

peptide terminals is known as a mismatch (Herkenham, 1987). The mismatch phenomenon is 

common throughout the central nervous system (reviewed in Herkenham, 1987) and occurs in 

several systems such as circadian rhythms (Rusak and Bina, 1990) and respiratory control 

(Moss et al., 1986). In this mismatch simation the information flow is thought to occur in a 

"parasynaptic" manner with transmitter action from a distance (reviewed in Herkenham, 1987). 

Synaptogenesis within the FMN appears following a time when facial muscle 

movement takes place. Thus this delay in maturation of the FMN circuitry may allow for an 

additional layer of plasticity in the regulation of the neuromuscular control of food intake. 
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Further, these results suggest that function / activity of facial motoneurons is regulated in a 

novel or distinct manner compared to that of hypoglossal motoneurons during brain 

development. 
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